Electronics, computing, and information technology

Electronics, computing, and information technology includes semiconductors, optoelectronics, photonics, artificial intelligence, information/communication technologies, quantum dots, quantum computing, neuromorphic computing

New nanocrystal material a key step toward faster, more energy-efficient computing

Scientists from Oregon State University; the Molecular Foundry at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory; Columbia University; and the Autonomous University of Madrid, Spain, have discovered luminescent nanocrystals that can be quickly toggled from light to dark and back again. "Normally, luminescent materials give off light when they are excited by a laser and remain dark when they are not," said Artiom Skripka, one of the scientists involved in this study. "In contrast, we were surprised to find that our nanocrystals live parallel lives.

A new ultrathin conductor for nanoelectronics

Researchers from Stanford University; the IBM T.J. Watson Research Center in Yorktown Heights, NY; the Korea Electronics Technology Institute in Seongnam-si, South Korea; and Ajou University in Suwon, South Korea, have shown that niobium phosphide can conduct electricity better than copper in films that are only a few atoms thick. Many researchers have been working to find better conductors for nanoscale electronics, but so far the best candidates have had extremely precise crystalline structures, which need to be formed at very high temperatures.

Engineering quantum entanglement at the nanoscale

Researchers from Columbia University, the University of Chicago, the University of Vienna in Austria, Politecnico di Milano in Italy, and Universita Degli Studi Dell’ Aquila in Italy have created a device that can generate photon pairs more efficiently than previous methods while being less prone to error. To create the device, the researchers used thin crystals of a van der Waals semiconducting transition metal called molybdenum disulfide. Then, they layered six of these crystal pieces into a stack, with each piece rotated 180 degrees relative to the crystal slabs above and below.

Rice researchers unlocks new insights into tellurene, paving the way for next-gen electronics

Researchers from the Massachusetts Institute of Technology, Purdue University, Stanford University, Rice University, and the U.S. Department of Energy’s Lawrence Berkeley National Laboratory, Argonne National Laboratory, and Oak Ridge National Laboratory have described how a type of quasiparticle, called a polaron, behaves in tellurene, a nanomaterial made up of tiny chains of tellurium atoms. A polaron forms when charge-carrying particles such as electrons interact with vibrations in the atomic or molecular lattice of a material.

Diamond continues to shine: New properties discovered in diamond semiconductors

Researchers from Case Western Reserve University, the University of Illinois Urbana-Champaign, Adamas Nanotechnologies (Raleigh, NC), the University of Luxembourg in Luxemburg, Umeå University in Sweden, and Aix Marseille University in France have found that boron-doped diamonds exhibit plasmons – waves of electrons that move when light hits them – allowing electric fields to be controlled and enhanced on a nanometer scale. Previously, boron-doped diamonds were known to conduct electricity and become superconductors, but not to have plasmonic properties.

Mizzou scientists harness the power of ‘layered’ crystals for energy innovation

University of Missouri scientists are unlocking the secrets of halide perovskites – a material that might bring us closer to energy-efficient optoelectronics. The scientists are studying the material at the nanoscale. At this level, the material is astonishingly efficient at converting sunlight into energy. To optimize the material for electronic applications, the scientists used a method called ice lithography, known for its ability to fabricate materials at the nanometer scale.

Scientists at Montana State reveal potential source of light for quantum technologies

Scientists from Montana State University, Columbia University, the Massachusetts Institute of Technology, Pennsylvania State University, North Carolina State University, the Honda Research Institute in San Jose, CA, and the National University of Singapore have enabled the emission of single photons of light in ultra small, two-dimensional, ribbon-shaped materials measuring one atom thick and tens of atoms wide – about a thousand times narrower than the width of a human hair.

Deep-ultraviolet laser microscope reveals diamond’s nanoscale transport behaviors

Researchers from the Joint Institute for Laboratory Astrophysics (JILA) (a joint institute of the University of Colorado Boulder and the National Institute of Standards and Technology), KMLabs Inc. in Boulder, CO, and 3M Center in St. Paul, MN, have developed a novel microscope that makes examining ultrawide-bandgap semiconductors – which have a relatively large energy gap between the valence and conduction bands – possible on an unprecedented scale.