Electronics, computing, and information technology

Electronics, computing, and information technology includes semiconductors, optoelectronics, photonics, artificial intelligence, information/communication technologies, quantum dots, quantum computing, neuromorphic computing

Scientists reveal key to affordable, room-temperature quantum light

Scientists from the University of Oklahoma and Northwestern University have shown that adding a crystalized molecular layer to quantum dots made of perovskite prevents them from darkening or blinking. Quantum dots, which are nanoparticles that have unique optical and electronic properties, usually fade out after 10–20 minutes of use. The crystal coverings developed in this study extend the continuous light emission of quantum dots to more than 12 hours with virtually no blinking.

Collection of tiny antennas can amplify and control light polarized in any direction

Researchers at Washington University in St. Louis have developed ultra-thin materials, called metasurfaces, that can amplify and interact with light regardless of its polarization. The metasurfaces are made of tiny nanoantennas that can both amplify and control light in very precise ways and could replace conventional refractive surfaces in eyeglasses and smartphone lenses.

New 2D carbon material is tougher than graphene and resists cracking

Researchers from Rice University; the Massachusetts Institute of Technology; Carnegie Mellon University; the National University of Singapore; Southern University of Science and Technology in Shenzhen, China; and Osaka University in Japan have found a two-dimensional (2D) carbon material that is tougher than graphene and resists cracking. Carbon-derived materials, such as graphene, are among the strongest on Earth, but once established, cracks propagate rapidly through them, making them prone to sudden fracture.

Researchers record ultrafast chorus dance of electrons on super-small particle

Researchers from the U.S. Department of Energy's SLAC National Accelerator Laboratory; Villanova University; Northwest Missouri State University; Deutsches Elektronen-Synchrotron DESY in Hamburg, Germany; the Max Planck Institute of Quantum Optics in Garching, Germany; the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany; the Institute for Photonics and Nanotechnologies in Milano, Italy; and Politecnico di Milano in Italy have observed how electrons, excited by ultrafast light pulses, danced in unison around fullerene (C60) molecules.

New nanoscale technique unlocks quantum material secrets

Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have unveiled a new technique that could help advance the development of quantum technology. Their innovation provides an unprecedented look at how quantum materials behave at interfaces. “This technique allows us to study surface phonons — the collective vibrations of atoms at a material’s surface or interface between materials,” said Zhaodong Chu, one of the scientists involved in this study.

Light-Powered Breakthrough Enables Precision Tuning of Quantum Dots

Researchers at North Carolina State University have demonstrated a new technique that uses light to tune the optical properties of quantum dots. The researchers placed green-emitting perovskite quantum dots in a solution containing either chlorine or iodine. The solution was then run through a microfluidic system that incorporated a light source. The microfluidic environment enabled precise reaction control by ensuring uniform light exposure across small solution volumes, approximately 10 microliters per reaction droplet.

Magnetic semiconductor preserves 2D quantum properties in 3D material

Researchers from Penn State; Columbia University; the National Renewable Energy Laboratory in Golden, CO; TUD Dresden University of Technology in Germany; King’s College London; Radboud University in the Netherlands; the University of Chemistry and Technology Prague in the Czech Republic; and the University of Regensburg in Germany have identified a surface exciton – an excited electron and the hole it leaves behind – in chromium sulfide bromide, a layered magnetic semiconductor.

‘Smaller and better’: Rice research uncovers performance sweet spot for relaxor nanomaterial

Researchers from Rice University, the University of California Berkeley, the University of Pennsylvania, and the Massachusetts Institute of Technology have shed light on how the extreme miniaturization of thin films affects the behavior of relaxor ferroelectrics — materials with noteworthy energy-conversion properties used in sensors, actuators, and nanoelectronics. The findings reveal that as the films shrink to dimensions comparable to internal polarization structures within the films, their fundamental properties can shift in unexpected ways.

From photons to protons: Argonne team makes breakthrough in high-energy particle detection

Researchers from the U.S. Department of Energy’s Argonne National Laboratory and Fermi National Accelerator Laboratory, as well as Northern Illinois University have discovered that superconducting nanowire photon detectors, which are used for detecting photons (the fundamental particles of light) could potentially also function as highly accurate particle detectors, specifically for high-energy protons used as projectiles in particle accelerators.