Electronics, computing, and information technology

Electronics, computing, and information technology includes semiconductors, optoelectronics, photonics, artificial intelligence, information/communication technologies, quantum dots, quantum computing, neuromorphic computing

UB researchers mix silicon with 2D materials for new semiconductor technology

Researchers from the University at Buffalo; Central South University in Changsha, China; Shandong Normal University in Jinan, China; TU Wien in Vienna, Austria; the University of Salerno in Italy; and Sungkyunkwan University in Suwon, South Korea, have demonstrated that using thin two-dimensional (2D) materials, like the semiconductor molybdenum disulfide (MoS2), in combination with silicon can create highly efficient electronic devices with excellent control over how an electrical charge is injected and transported.

Physicists measure a key aspect of superconductivity in ‘“agic-angle” graphene

Physicists from the Massachusetts Institute of Technology, Harvard University, and the National Institute for Materials Science in Tsukuba, Japan, have directly measured superfluid stiffness for the first time in "magic-angle" graphene – materials that are made from two or more atomically thin sheets of graphene twisted with respect to each other at just the right angle. The twisted structure exhibits superconductivity, in which electrons pair up, rather than repelling each other as they do in everyday materials.

Discovery of new growth-directed graphene stacking domains may precede new era for quantum applications

Researchers from New York University and Charles University in Prague, Czech Republic, have observed growth-induced self-organized stacking domains when three graphene layers are stacked and twisted with precision. The findings demonstrate how specific stacking arrangements in three-layer graphene systems emerge naturally – eliminating the need for complex, non-scalable techniques traditionally used in graphene twisting fabrication. The size and shape of these stacking domains are influenced by the interplay of strain and the geometry of the three-layer graphene regions.

FSU researchers develop new method to generate and improve magnetism of 2D materials

Researchers from Florida State University; the National High Magnetic Field Laboratory in Tallahassee, FL; and the Universitat de València in Spain have unlocked a new method for producing one class of 2D material and for supercharging its magnetic properties. Experimenting on a metallic magnet made from the elements iron, germanium and tellurium, the research team made two breakthroughs: a collection method that yielded 1,000 times more material than typical practices, and the ability to change the material’s magnetic properties through a chemical treatment.

Tiny particle, huge potential

Researchers from the University of Missouri and the U.S. Department of Energy’s Oak Ridge National Laboratory have discovered a new type of quasiparticle that is found in nanostructured magnets, no matter their strength or temperature. "We've all seen the bubbles that form in sparkling water or other carbonated drink products," said Carsten Ullrich, one of the scientists involved in this study.

Physics experiment proves patterns in chaos in peculiar quantum realm

Scientists from the University of California, Berkeley; the University of California, Santa Cruz; Harvard University; the University of Manchester in the United Kingdom; and the National Institute for Materials Science in Tsukuba, Japan, have conducted an experiment that confirms a theory first put forth 40 years ago stating that electrons confined in quantum space would move along common paths rather than producing a chaotic jumble of trajectories.

Room temperature electrical control could heat up future technology development

Researchers from Penn State, the Massachusetts Institute of Technology (MIT) (including @MIT_ISN), and North Carolina Agricultural and Technical State University have discovered a different version of the Hall effect, called the nonreciprocal Hall effect, which, unlike the conventional Hall effect, does not require a magnetic field. In particular, in this case, the Hall voltage is proportional to the square of the current instead of being proportional to the current.

Potential of MXenes for nanotech applications

Researchers from the University of Nebraska-Lincoln and South Dakota School of Mines and Technology are exploring the physical properties of two-dimensional materials called MXenes. Previous research by the Nebraska team on other MXene materials revealed their n-type (electron-rich) character and decreased conductivity in response to light. In contrast, the new material is the first MXene with demonstrated p-type (electron-deficient) property and increasing conductivity under illumination.

Nanoscale transistors could enable more efficient electronics

Researchers from the Massachusetts Institute of Technology and the University of Udine in Italy have created a new type of three-dimensional transistor using a unique set of ultrathin semiconductor materials. It features vertical nanowires only a few nanometers wide, which can deliver performance comparable to state-of-the-art silicon transistors while operating efficiently at much lower voltages than conventional devices.

Scientists Capture Images of Electron Molecular Crystals

Researchers from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory, the University of California at Berkeley, the Massachusetts Institute of Technology, Arizona State University, and the National Institute for Materials Science in Tsukuba, Japan, have captured direct images of a new quantum phase of an electron solid – the Wigner molecular crystal. Whereas Wigner crystals are characterized by a honeycomb arrangement of electrons, Wigner molecular crystals have a highly ordered pattern of artificial “molecules” made of two or more electrons.