Biomedical

Biomedical includes nanomedicine, vaccines, wearable electronics, implants, lab-grown tissues, nanorobots, microfluidics, biotechnology, imaging

Scientists design peptides to enhance drug efficacy

Scientists from the City University of New York, the Memorial Sloan Kettering Cancer Center, and Weill Cornell Medicine have developed a groundbreaking approach using nanoparticles that are primarily composed of a drug and a thin peptide coating which improves solubility, enhances stability in the body, and optimizes delivery to targeted areas. In leukemia models, the nanoparticles were more effective at shrinking tumors compared to the drug alone.

Escaping the endosome: BEND lipids improve LNP mRNA delivery and gene editing

A few years ago, researchers at Carnegie Mellon University made an intriguing discovery: adding a branch to the end of lipid nanoparticles' normally linear lipid tails dramatically improved messenger RNA (mRNA) delivery. Now, researchers at the University of Pennsylvania have tested branched lipids in a variety of experiments and found that these lipids reliably outperform even the lipid nanoparticles used by Moderna and Pfizer/BioNTech, the makers of the COVID-19 vaccines.

Video: Tracking disease progression in technicolor

Researchers at Penn State have developed novel contrast agents that target two proteins implicated in osteoarthritis, a degenerative joint disease. By marking the proteins with the contrast agents, which comprise newly designed metal nanoprobes, the researchers can use advanced imaging, called photon-counting computed tomography, to simultaneously track separate biological processes in color, which, together, reveal more about the disease’s progression than a traditional scan.

Surprising longevity of nanoparticle paste offers hope for surgery-sparing technique

Scientists from the University of Virginia, the University of Wisconsin-Madison, The Ohio State University, Northwestern University, the University of Tokyo, and the Sakakibara Heart Institute in Tokyo have developed a nanotechnology-based drug delivery system to save patients from repeated surgeries. The approach would allow surgeons to apply a paste of nanoparticles containing hydrogel on transplanted veins to prevent the formation of harmful blockages inside the veins.

Printable molecule-selective nanoparticles enable mass production of wearable biosensors

Researchers from Caltech; the Beckman Research Institute at City of Hope in Duarte, CA; and the University of California, Los Angeles, have developed a technique for inkjet-printing arrays of special nanoparticles that enables the mass production of long-lasting wearable sweat sensors. These sensors could be used to monitor a variety of biomarkers – such as vitamins, hormones, metabolites, and medications – in real time, providing patients and their physicians with the ability to continually follow changes in the levels of those molecules.

SMU graduate student makes breakthrough in biosensing technology

Researchers at Southern Methodist University, the University of Texas at Arlington, the U.S. Department of Energy’s Brookhaven National Laboratory, and the Korea Institute of Science and Technology in Seoul have discovered a way to enhance the sensitivity of nanopores for early detection of diseases. They integrated octahedral DNA origami structures with solid-state nanopores to significantly improve the detection of proteins, especially those that are present in low concentrations. Nanopores are tiny holes that can detect individual molecules as they pass through.

UK researchers explore use of nanoparticles to improve cancer therapy

Researchers at the University of Kentucky and the New York Blood Center in New York City have discovered that combining magnetic nanoparticles with ascorbic acid destroyed breast cancer cells, but only if the nanoparticles were added and went inside the cells first before the ascorbic acid was added. "This discovery underscores the significance of coordinating nanoparticles and ascorbic acid in cancer treatment,” said Sheng Tong, the scientist who led this study.

Lipid nanoparticle delivers potential mRNA cure for pre-eclampsia

Researchers at the University of Pennsylvania have shown that lipid nanoparticles can mediate more than 100-fold greater mRNA delivery to the placenta of pregnant mice with pre-eclampsia than a lipid nanoparticle formulation approved by the U.S. Food  and Drug Administration. These lipid nanoparticles can decrease high blood pressure and increase vasodilation in these pre-eclamptic pregnant mice.

Minuscule robots for targeted drug delivery

Researchers from Caltech, the University of Southern California, Santa Clara University, and the National University of Singapore have developed microrobots that decreased the size of bladder tumors in mice by delivering therapeutic drugs directly to the bladders. The microrobots incorporated magnetic nanoparticles and the therapeutic drug within the outer structure of the spheres. The magnetic nanoparticles allowed the scientists to direct the robots to a desired location using an external magnetic field.

UCF researcher discovers new technique for infrared “color” detection and imaging

Researchers from the University of Central Florida have developed a new technique to detect long-wave infrared photons of different wavelengths based on a nanopatterned graphene. "No present cooled or uncooled detectors offer such dynamic spectral tunability and ultrafast response," said Debashis Chanda, the scientist who led this study.