Biomedical

Biomedical includes nanomedicine, vaccines, wearable electronics, implants, lab-grown tissues, nanorobots, microfluidics, biotechnology, imaging

Surprising longevity of nanoparticle paste offers hope for surgery-sparing technique

Scientists from the University of Virginia, the University of Wisconsin-Madison, The Ohio State University, Northwestern University, the University of Tokyo, and the Sakakibara Heart Institute in Tokyo have developed a nanotechnology-based drug delivery system to save patients from repeated surgeries. The approach would allow surgeons to apply a paste of nanoparticles containing hydrogel on transplanted veins to prevent the formation of harmful blockages inside the veins.

Printable molecule-selective nanoparticles enable mass production of wearable biosensors

Researchers from Caltech; the Beckman Research Institute at City of Hope in Duarte, CA; and the University of California, Los Angeles, have developed a technique for inkjet-printing arrays of special nanoparticles that enables the mass production of long-lasting wearable sweat sensors. These sensors could be used to monitor a variety of biomarkers – such as vitamins, hormones, metabolites, and medications – in real time, providing patients and their physicians with the ability to continually follow changes in the levels of those molecules.

SMU graduate student makes breakthrough in biosensing technology

Researchers at Southern Methodist University, the University of Texas at Arlington, the U.S. Department of Energy’s Brookhaven National Laboratory, and the Korea Institute of Science and Technology in Seoul have discovered a way to enhance the sensitivity of nanopores for early detection of diseases. They integrated octahedral DNA origami structures with solid-state nanopores to significantly improve the detection of proteins, especially those that are present in low concentrations. Nanopores are tiny holes that can detect individual molecules as they pass through.

UK researchers explore use of nanoparticles to improve cancer therapy

Researchers at the University of Kentucky and the New York Blood Center in New York City have discovered that combining magnetic nanoparticles with ascorbic acid destroyed breast cancer cells, but only if the nanoparticles were added and went inside the cells first before the ascorbic acid was added. "This discovery underscores the significance of coordinating nanoparticles and ascorbic acid in cancer treatment,” said Sheng Tong, the scientist who led this study.

Lipid nanoparticle delivers potential mRNA cure for pre-eclampsia

Researchers at the University of Pennsylvania have shown that lipid nanoparticles can mediate more than 100-fold greater mRNA delivery to the placenta of pregnant mice with pre-eclampsia than a lipid nanoparticle formulation approved by the U.S. Food  and Drug Administration. These lipid nanoparticles can decrease high blood pressure and increase vasodilation in these pre-eclamptic pregnant mice.

Minuscule robots for targeted drug delivery

Researchers from Caltech, the University of Southern California, Santa Clara University, and the National University of Singapore have developed microrobots that decreased the size of bladder tumors in mice by delivering therapeutic drugs directly to the bladders. The microrobots incorporated magnetic nanoparticles and the therapeutic drug within the outer structure of the spheres. The magnetic nanoparticles allowed the scientists to direct the robots to a desired location using an external magnetic field.

UCF researcher discovers new technique for infrared “color” detection and imaging

Researchers from the University of Central Florida have developed a new technique to detect long-wave infrared photons of different wavelengths based on a nanopatterned graphene. "No present cooled or uncooled detectors offer such dynamic spectral tunability and ultrafast response," said Debashis Chanda, the scientist who led this study.

Unlocking the brain: Peptide-guided nanoparticles deliver mRNA to neurons

Engineers at the University of Pennsylvania have modified lipid nanoparticles to not only cross the blood-brain barrier but also to target specific types of cells, including neurons. The researchers showed how short strings of amino acids can serve as precise targeting molecules, enabling the lipid nanoparticles to deliver mRNA specifically to the endothelial cells that line the blood vessels of the brain, as well as neurons. This breakthrough marks a significant step toward potential next-generation treatments for neurological diseases like Alzheimer's and Parkinson's.

Light-induced gene therapy disables cancer cells’ energy center

Scientists from The Ohio State University have combined strategies to deliver energy-disrupting gene therapy against cancer by using nanoparticles. Experiments showed the targeted therapy is effective at shrinking glioblastoma brain tumors and aggressive breast cancer tumors in mice. The approach consists of breaking up structures inside these cellular energy centers, called mitochondria, with a technique that induces light-activated electrical currents inside the cells.

Engineers refine lipid nanoparticles for better mRNA therapies

Nanoparticles have transformed how mRNA vaccines and therapeutics are delivered by allowing them to travel safely through the body, reach target cells and release their contents efficiently. At the heart of these nanoparticles are ionizable lipids, special molecules that can switch between charged and neutral states depending on their surroundings. Now, researchers at the University of Pennsylvania have used an iterative process to find the ideal structure for the ionizable lipid.