Nanoparticles have transformed how mRNA vaccines and therapeutics are delivered by allowing them to travel safely through the body, reach target cells and release their contents efficiently. At the heart of these nanoparticles are ionizable lipids, special molecules that can switch between charged and neutral states depending on their surroundings. Now, researchers at the University of Pennsylvania have used an iterative process to find the ideal structure for the ionizable lipid. By borrowing the idea of directed evolution, a technique used in both chemistry and biology that mimics the process of natural selection, the researchers combined precision with rapid output to achieve their ideal “ionizable lipid recipe."
An official website of the United States government.