Biomedical

Biomedical includes nanomedicine, vaccines, wearable electronics, implants, lab-grown tissues, nanorobots, microfluidics, biotechnology, imaging

Special delivery nanoparticle can program stem cells while inside the body

Researchers from Georgia Tech, Emory University, and the University of California, Davis, have created a technique that could lead to new, less-invasive treatments for blood disorders and genetic diseases. "This would be an alternative to invasive hematopoietic stem cell therapies – we could just give you an IV drip," said James Dahlman, one of the researchers involved in this study.

A Tour de Force: Columbia Engineers Discover ‘All-optical’ Nanoscale Sensors of Force

Researchers from Columbia University; the Molecular Foundry at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory; and the University of Utah have invented new nanoscale sensors of force. They are luminescent nanocrystals that can change intensity and/or color when you push or pull on them. These "all-optical" nanosensors are probed with light only and therefore allow for fully remote read-outs—no wires or connections are needed.

Micro, modular, mobile – DNA-linked microrobots offer new possibilities in medicine and manufacturing

Researchers from Carnegie Mellon University have found a way to control the size and structure of active colloids while yielding more than 100 times the amount created by earlier fabrication methods. The team's active colloids are linked together using DNA nanostructures – an innovation that makes them flexible, agile, and responsive to signals in their environment. Typically, DNA nanotechnology can only be studied using expensive equipment.

Q&A: Researchers discuss lipid nanoparticle therapy to stop tumor growth and restore tumor suppression

Most cancers occur when there is an imbalance of cellular growth and inhibition, causing cells to grow rapidly and form tumors in the body. In the case of prostate cancer, no therapies exist to simultaneously correct tumor growth and restore tumor suppression. To restore this balance, researchers from Brigham and Women's Hospital, which is part of Harvard Medical School, have used lipid nanoparticles to deliver messenger RNA (mRNA) and small interfering RNA (siRNA) to human prostate cancer cells.

New biosensors could revolutionize cancer detection

Researchers from Georgia Tech and the University of California Riverside have developed biosensors made of iron oxide nanoparticles and special molecules called cyclic peptides that recognize tumor cells better than current biosensors. The cyclic peptides respond only when they encounter two specific types of enzymes – one secreted by the immune system, the other by cancer cells. In animal studies, the biosensors distinguished between tumors that responded to a common cancer treatment that enhances the immune system from tumors that resisted treatment.

Scientists develop tiny anticancer weapon

Researchers from the University of Pennsylvania; the Wistar Institute in Philadelphia, PA; Central South University in Changsha, China, have engineered small nano-sized capsules called extracellular vesicles from human cells to target a cell-surface receptor called DR5 (death receptor 5) that many tumor cells have. When activated, DR5 can trigger the death of these tumor cells by a self-destruct process called apoptosis. Researchers have been trying for more than 20 years to develop successful DR5-targeting cancer treatments.

Mosaic nanoparticle vaccine approach could help combat future coronavirus pandemics

A new experimental vaccine developed by researchers from the Massachusetts Institute of Technology, Massachusetts General Hospital, Caltech, and the University of Cambridge in the United Kingdom could offer protection against emerging variants of SARS-CoV-2, as well as related coronaviruses, known as sarbecoviruses, that could spill over from animals to humans. Sarbecoviruses include SARS-CoV-2 (the virus that causes COVID-19) and the virus that led to the outbreak of the original SARS in the early 2000s.

Scientists design peptides to enhance drug efficacy

Scientists from the City University of New York, the Memorial Sloan Kettering Cancer Center, and Weill Cornell Medicine have developed a groundbreaking approach using nanoparticles that are primarily composed of a drug and a thin peptide coating which improves solubility, enhances stability in the body, and optimizes delivery to targeted areas. In leukemia models, the nanoparticles were more effective at shrinking tumors compared to the drug alone.

Escaping the endosome: BEND lipids improve LNP mRNA delivery and gene editing

A few years ago, researchers at Carnegie Mellon University made an intriguing discovery: adding a branch to the end of lipid nanoparticles' normally linear lipid tails dramatically improved messenger RNA (mRNA) delivery. Now, researchers at the University of Pennsylvania have tested branched lipids in a variety of experiments and found that these lipids reliably outperform even the lipid nanoparticles used by Moderna and Pfizer/BioNTech, the makers of the COVID-19 vaccines.

Video: Tracking disease progression in technicolor

Researchers at Penn State have developed novel contrast agents that target two proteins implicated in osteoarthritis, a degenerative joint disease. By marking the proteins with the contrast agents, which comprise newly designed metal nanoprobes, the researchers can use advanced imaging, called photon-counting computed tomography, to simultaneously track separate biological processes in color, which, together, reveal more about the disease’s progression than a traditional scan.