Electronics, computing, and information technology

Electronics, computing, and information technology includes semiconductors, optoelectronics, photonics, artificial intelligence, information/communication technologies, quantum dots, quantum computing, neuromorphic computing

For Layered 2D Materials, Robotics Produces Cleaner Interfaces Between Stacked Sheets

Researchers from New York University; the Center for Functional Nanomaterials (CFN), a U.S. Department of Energy Office of Science user facility at Brookhaven National Laboratory; and the National Institute for Materials Science in Tsukuba, Japan, have used a special robotic system to assemble very large pieces of atomically clean two-dimensional materials into stacks. These materials, called graphene heterostructures, consist of sheets just a few atoms thick, have record-setting dimensions – as large as 7.5 square millimeters, which is very large in the world of microelectronics.

Nature and plastics inspire breakthrough in soft sustainable materials

Using peptides and a snippet of the large molecules in plastics, scientists at Northwestern University have developed materials made of tiny, flexible nano-sized ribbons that can be charged just like a battery to store energy or record digital information. Highly energy efficient, biocompatible and made from sustainable materials, the systems could give rise to new types of ultralight electronic devices while reducing the environmental impact of electronic manufacturing and disposal. "This is a wholly new concept in materials science and soft materials research," said Samuel I.

Specially designed transistors allow researchers to ‘hear’ defects in a promising nanomaterial

Researchers from New York University, the U.S. Department of Energy’s Brookhaven National Laboratory, the Korea Advanced Institute of Science and Technology, and the National Institute for Materials Science in Tsukuba, Japan, have pioneered a new technique to identify and characterize atomic-scale defects in a two-dimensional (2D) material called hexagonal boron nitride. The team was able to detect the presence of individual carbon atoms replacing boron atoms in this material.

Researchers succeed in taking 3D X-ray images of a skyrmion

A difficult-to-describe nanoscale object called a magnetic skyrmion – which can be thought of as spinning circles of magnetism – might one day yield new microelectronic devices that can do more while consuming less power. Researchers from the Department of Energy's (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab), Paul Scherrer Institute in Villigen, Switzerland, and Western Digital Corporation (San Jose, CA) have now made three-dimensional (3D) X-ray images of magnetic skyrmions.

Kory Burns Leads AI-enhanced Breakthrough that Illuminates Materials

Researchers from the University of Virginia, the University of California-Berkeley, the University of Florida, the University of Tennessee-Knoxville, the University of Michigan, and the U.S. Department of Energy’s Sandia National Laboratories and Center for Integrated Nanotechnologies have developed an innovative technique to better determine the nanoscale effects of radiation on materials.

World’s first micromachine twists 2D materials at will

Just a few years ago, researchers discovered that changing the angle between two layers of graphene, an atom-thick sheet of carbon, also changed the material's electronic and optical properties. To study the physics underlying this phenomenon, researchers usually produce tens to hundreds of different configurations of the twisted graphene structures – a costly and labor-intensive process.

New technique pinpoints nanoscale ‘hot spots’ in electronics to improve their longevity

Researchers from the University of Rochester have outlined a process for mapping heat transfer using luminescent nanoparticles. By applying highly doped upconverting nanoparticles to the surface of a device, the researchers were able to achieve super-high-resolution thermometry at the nanoscale level from up to 10 millimeters away. According to Andrea Pickel , one of the scientists involved in the study, this method could be used by manufacturers to improve a wide array of electrical components.

A New Approach to Accelerate the Discovery of Quantum Materials

For the first time, researchers from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), Dartmouth College, Penn State, the University of California, Merced, and Université Catholique de Louvain in Belgium have demonstrated an approach that combines high-throughput computation and atomic-scale fabrication to engineer high-performance quantum defects.

Tunable metasurface can control optical light in space and time, offering path to wireless communication channels

Caltech engineers have built a metasurface patterned with tunable nanoscale antennas capable of reflecting an incoming beam of optical light to create many channels of different optical frequencies. The work points to a promising route for the development of not only a new type of wireless communication channel but also potentially new range-finding technologies and even a novel way to relay larger amounts of data to and from space.