‘Smaller and better’: Rice research uncovers performance sweet spot for relaxor nanomaterial

Date posted
Funding Agency
(Funded by the U.S. Department of Defense and the U.S. Department of Energy)

Researchers from Rice University, the University of California Berkeley, the University of Pennsylvania, and the Massachusetts Institute of Technology have shed light on how the extreme miniaturization of thin films affects the behavior of relaxor ferroelectrics — materials with noteworthy energy-conversion properties used in sensors, actuators, and nanoelectronics. The findings reveal that as the films shrink to dimensions comparable to internal polarization structures within the films, their fundamental properties can shift in unexpected ways. More specifically, when the films are shrunk down to a precise range of 25–30 nanometers, their ability to maintain their structure and functionality under varying conditions is significantly enhanced.