Biomedical

Biomedical includes nanomedicine, vaccines, wearable electronics, implants, lab-grown tissues, nanorobots, microfluidics, biotechnology, imaging

Artificial muscles spring into action with mandrel-free fabrication technique

Researchers from The University of Texas at Dallas; Texas State University in San Marcos, TX; and Lintec of America in Plano, TX, as well as international collaborators,  have invented a new, inexpensive method in which fibers are coiled to make springlike artificial muscles. What’s unique about this method is that it doesn’t make use of a mandrel – a spindle that serves to support or shape the artificial muscles.

Mapping the future of metamaterials

In a Perspective article published in Nature Materials, two engineers at the Massachusetts Institute of Technology, Carlos Portela and James Surjadi, discuss key hurdles, opportunities, and future applications in the field of mechanical metamaterials. Metamaterials are artificially structured materials with properties not easily found in nature. With engineered three-dimensional geometries at the micro- and nanoscale, metamaterials achieve unique mechanical and physical properties with capabilities beyond those of conventional materials.

Scientists demonstrate pre-clinical proof of concept for next-gen DNA delivery technology

Scientists from The Wistar Institute, the University of Pennsylvania, the Icahn School of Medicine at Mount Sinai, Saint Joseph’s University (Philadelphia, PA), and Inovio Pharmaceuticals (Plymouth Meeting, PA) have described a next-generation vaccination technology that combines plasmid DNA with a lipid nanoparticle delivery system.

Sensor technology uses nature’s blueprint and machinery to monitor metabolism in body

Researchers from the California NanoSystems Institute at the University of California, Los Angeles, have developed a sensor technology based on natural biochemical processes that can continuously and reliably measure multiple metabolites at once. The sensors are built onto electrodes made of tiny cylinders called single-wall carbon nanotubes. These electrodes use enzymes and other molecules to perform reactions that mirror the body’s metabolic processes.

DNA-loaded lipid nanoparticles are poised to bring gene therapy to common chronic diseases

Researchers at the University of Pennsylvania have developed a new process that transports DNA into cells using lipid nanoparticles. Unlike messenger RNA (mRNA), DNA remains active in cells for months, or even years, and can be programmed to work only in targeted cells. But past attempts to use lipid nanoparticles to deliver DNA failed, because DNA can trigger severe immune reactions. The researchers discovered that by adding a natural anti-inflammatory molecule, called nitro-oleic acid, to the lipid nanoparticles, these immune reactions could be eliminated.

Light-induced symmetry changes in tiny crystals allow researchers to create materials with tailored properties

Scientists from the U.S. Department of Energy’s (DOE) Argonne National Laboratory (ANL) and SLAC National Accelerator Laboratory; the University of Chicago; the University of Vermont; Middlebury College; Brown University; Stanford University; and Northwestern University have observed that when semiconductor nanocrystals called quantum dots were exposed to short bursts of light, the symmetry of the crystal structure changed from a disordered state to a more organized one.

Uniquely shaped, fast-heating nanoparticles halt ovarian tumor growth

Researchers from Oregon State University, Oregon Health & Science University, and international collaborators have developed magnetic nanoparticles in the shape of a cube sandwiched between two pyramids for the treatment of ovarian cancer. Made of iron oxide and doped with cobalt, the nanoparticles show exceptional heating efficiency when exposed to an alternating magnetic field. When the particles accumulate in cancerous tissue after intravenous injection, they are able to quickly rise to temperatures that weaken or destroy cancer cells.

Scientists design protein booster for rare genetic diseases

Scientists from The Johns Hopkins University, the Mayo Clinic, and Tufts University have developed a potential new way to treat a variety of rare genetic diseases marked by too low levels of specific cellular proteins. To boost those proteins, the scientists created a genetic "tail" that attaches to messenger RNA (mRNA) molecules that churn out the proteins. To deliver these genetic tails, also called “mRNA boosters,” the scientists encased them in nanoparticles covered in lipids. The nanoparticles are naturally absorbed by cells through their fatty outer membranes.

Experiments aboard the International Space Station may offer promising advancements in fighting cancer

Researchers from the University of Connecticut will grow rod-shaped nanoparticles, called Janus base nanotubes, on the International Space Station. These nanotubes will carry interleukin-12, a protein produced naturally by the human body to stimulate the development of helper T-cells, immune cells known for killing pathogens and cancer cells. With cross sections of just 20 nanometers, the nanotubes can slip into the cracks and attack solid tumors from the inside and then release interleukin-12 inside a tumor. Manufacturing these nanotubes in space has many advantages.

Carbon nanotubes and machine learning: A new way to spot subtle immune cell differences

Researchers from the University of Rhode Island and Brown University have shown that carbon nanotubes could be combined with machine learning to detect subtle differences between closely related immune cells. The researchers used an in vitro experiment that involved placing live cells into a culture dish, adding carbon nanotubes, and then using a specialized microscope with an infrared camera to observe the emitted light from each cell. The camera generated millions of data points, each of which reflected cellular activity.