News from the NNI Community - Research Advances Funded by Agencies Participating in the NNI

Date Published
(Funded by the National Institute of Standards and Technology)

Scientists at the National Institute of Standards and Technology have developed a new technique for measuring how radiation damages DNA molecules. This technique, which passes DNA through tiny openings called nanopores, detects radiation damage faster and more accurately than existing methods. The technique could track how well a tumor is responding to radiation, allowing for personalized adjustments to treatment. Also, in nuclear accidents or radiation poisoning, traditional methods to assess radiation exposure may take days, but with this new technology, first responders can obtain real-time data in minutes. 

(Funded by the U.S. Department of Energy)

Researchers at the U.S. Department of Energy’s Lawrence Livermore National Laboratory have developed a new type of electrically controlled, near-infrared smart window that can cut near-infrared light transmission by almost 50%. In these smart windows, carbon nanotubes are grown so they stand upright on the glass, like a microscopic forest. Depending on the voltage applied, the nanotubes can either absorb infrared light and block heat from the sun or let the infrared light through. Once the carbon nanotubes are put into either a blocking or transparent state, they retain charge well, and so, a continuous voltage is not needed to maintain that state. This property offers very low-power operation, a necessity to drive energy savings for the end user. 

(Funded by the National Institute of Standards and Technology)

Researchers at the National Institute of Standards and Technology have demonstrated a new and faster method for detecting and measuring the radioactivity of minuscule amounts of radioactive material. The innovative technique, known as cryogenic decay energy spectrometry, could have far-reaching impacts, from improving cancer treatments to ensuring the safety of nuclear waste cleanup. The researchers use a specialized inkjet device to carefully dispense tiny amounts, less than 1 millionth of a gram, of a radioactive solution onto thin gold foils. These gold foils have a surface dotted with tiny pores just billionths of a meter in size. These nanopores help to absorb the tiny droplets of the radioactive solution.  By precisely measuring the mass of the solution that is dispensed using the inkjet and then measuring the radioactivity of the dried sample on the gold foils, the researchers can calculate the radioactivity per unit mass of the sample. 

(Funded by the U.S. National Science Foundation and the U.S. Department of Defense)

Researchers at Penn Engineering have made a surprising discovery: a new type of material that can pull water from the air and release it onto surfaces without any need for external energy. Originally stumbled upon by accident during unrelated experiments, the material combines water-attracting and water-repelling components at the nanoscale in a way that allows it to both capture moisture and push it out as visible droplets. This discovery could lead to new ways of collecting water in dry areas or cooling buildings and electronics using only evaporation without the need for any external energy.

What makes this material unique is its ability to continuously draw water vapor into tiny pores and then release it as droplets, which is unlike how typical nanoporous materials behave. The discovery opens up exciting possibilities for sustainable technologies powered by moisture in the air.

(Funded by the U.S. Department of Defense and the U.S. National Science Foundation)

Scientists at Florida State University have mapped the internal structure of blacktip sharks in unprecedented detail. At the nanoscale, the researchers observed tiny needle-like bioapatite crystals – a mineral also found in human bones – aligned with strands of collagen. Even more intriguing, the team discovered helical fiber structures primarily based on collagen – suggesting a sophisticated, layered design optimized to prevent cracks from spreading. Under strain, fiber and mineral networks work together to absorb and distribute force, contributing to the shark’s resilience and flexibility. This detailed understanding of how sharks build such tough yet adaptable structures could inspire the creation of new, more resilient materials for medical implants or protective gear. 

(Funded by the U.S. Department of Energy)

Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have unveiled a novel approach to understanding stochasticity in tiny magnetic structures. Their work explores the intricate decision-making processes of nanomagnetic Galton boards, a modern take on a classical concept in statistics and computing. Their insights have the potential to transform computing architectures, leading to more sophisticated neural networks and enhancing encryption technologies to secure data against cyber threats. A Galton board uses a triangular array of pegs. As balls fall through the grid, they randomly bounce left or right, eventually landing somewhere along the bottom. In a nanomagnetic version of the Galton board instead of pegs, the boards use tiny magnetic structures made from a nickel-iron alloy. Instead of balls, they use domain walls, which are boundaries that separate regions with different magnetic orientations within a material. Nanostructures in this work were fabricated at the Center for Nanoscale Materials, a DOE Office of Science user facility at Argonne.

(Funded by the National Institutes of Health)

A child diagnosed with a rare genetic disorder has been successfully treated with a customized CRISPR gene editing therapy by a team of researchers at Children’s Hospital of Philadelphia and Penn Medicine. The researchers targeted the infant’s specific variant of a gene that codes for an enzyme in the liver that converts ammonia to urea (which is later excreted in urine). The researchers designed and manufactured a gene-editing therapy delivered via lipid nanoparticles to the liver in order to correct the infant’s faulty enzyme. As of April, the infant had received three doses of the therapy with no serious side effects. 

(Funded by the U.S. National Science Foundation)

Imagine a T-shirt that could monitor your heart rate or blood pressure. Or a pair of socks that could provide feedback on your running stride. This futuristic idea is getting closer to reality, thanks to new research from Washington State University. Scientists there have developed a more durable and comfortable way to print electronic materials onto fabrics, creating "smart" textiles. Unlike earlier attempts that relied on stiff or rigid components sewn or glued onto fabrics, this new method uses a direct ink 3D printing technique. Researchers printed a solution containing carbon nanotubes and a biodegradable polyester onto two types of fabric. This solution bonded well with the fibers, making the printed materials wash-friendly and able to hold up through abrasion. 

(Funded by the National Institutes of Health)

Northwestern Medicine investigators have developed first-of-its-kind eyedrops that use synthetic nanoparticles to help the eye regenerate cells that have been damaged by exposure to mustard gas, which has been historically used during wartime. These nanoparticles were designed to mimic some properties of high-density lipoproteins, which are naturally found in the bloodstream and can help the body regulate inflammation. The investigators tested the eyedrops on mice and discovered that the eyedrops not only reduced inflammation in the eyes of the mice but also restored cells that are responsible for maintaining and regenerating the cornea’s epithelium.

(Funded by the U.S. Department of Energy)

Researchers at the U.S. Department of Energy’s Lawrence Livermore National Laboratory have developed a new method to deposit quantum-dot films on corrugated surfaces. The researchers used electrophoretic deposition, which drives the quantum dots through a solution with an electric field toward an electrode with the opposite charge. When they reach that electrode, the quantum dots assemble into a film. Traditionally, quantum dots are made with long organic ligands – molecules that bind to the dots and stabilize them in solution. But after the quantum dots are deposited as a film, those long ligands act as insulators and limit device performance, so they are removed with post-processing. In this study, the researchers made quantum dot films using short ligands, which are more conductive and negate the need for post-processing.