News from the NNI Community - Research Advances Funded by Agencies Participating in the NNI

Date Published
(Funded by the National Science Foundation, the U.S. Department of Defense and the U.S. Department of Energy)

Scientists at the University of Illinois at Urbana-Champaign and the U.S. Army Corps of Engineers’ Construction Engineering Research Laboratory have demonstrated the ability to reproduce the nanostructures that help cicada wings repel water and prevent bacteria from establishing on the surface. The new technique – which uses commercial nail polish – is economical and straightforward, and the researchers said it will help fabricate future high-tech waterproof materials.

(Funded by the National Science Foundation, the U.S. Department of Defense and the U.S. Department of Energy)

Scientists at the University of Illinois at Urbana-Champaign and the U.S. Army Corps of Engineers’ Construction Engineering Research Laboratory have demonstrated the ability to reproduce the nanostructures that help cicada wings repel water and prevent bacteria from establishing on the surface. The new technique – which uses commercial nail polish – is economical and straightforward, and the researchers said it will help fabricate future high-tech waterproof materials.

(Funded by the U.S. Department of Defense)

Researchers at Virginia Commonwealth University are spinning liquid crystals into fibers that change color at different temperatures. These "smart fabrics" are made of soft, lightweight and elastic material, such as polymer nanomaterials made of plastics like nylon or polyethylene, and could be used in clothing such as camouflage or for detecting the presence of a pathogen like a virus.

(Funded by the U.S. Department of Defense)

Researchers at Virginia Commonwealth University are spinning liquid crystals into fibers that change color at different temperatures. These "smart fabrics" are made of soft, lightweight and elastic material, such as polymer nanomaterials made of plastics like nylon or polyethylene, and could be used in clothing such as camouflage or for detecting the presence of a pathogen like a virus.

(Funded by the U.S. Department of Energy)

Scientists at Washington State University have developed a method to detect biomarkers for Alzheimer's disease that is 10 times more sensitive than current blood testing technology. The researchers created an artificial enzyme using a single-atom architecture that was able to work as efficiently as natural enzymes. Their artificial enzyme, called a nanozyme, is made of single iron atoms embedded in nitrogen-doped carbon nanotubes.

(Funded by the U.S. Department of Energy)

Scientists at Washington State University have developed a method to detect biomarkers for Alzheimer's disease that is 10 times more sensitive than current blood testing technology. The researchers created an artificial enzyme using a single-atom architecture that was able to work as efficiently as natural enzymes. Their artificial enzyme, called a nanozyme, is made of single iron atoms embedded in nitrogen-doped carbon nanotubes.

(Funded by the U.S. Department of Defense, the National Science Foundation and the National Aeronautics and Space Administration)

Researchers at The University of Alabama in Huntsville have invented a new way to deposit thin layers of atoms as a coating onto a substrate material at near room temperatures. The researchers used an ultrasonic atomization technology to evaporate chemicals used in atomic layer deposition (ALD). ALD is a three-dimensional thin film deposition technique that plays an important role in microelectronics manufacturing.

(Funded by the U.S. Department of Defense, the National Science Foundation and the National Aeronautics and Space Administration)

Researchers at The University of Alabama in Huntsville have invented a new way to deposit thin layers of atoms as a coating onto a substrate material at near room temperatures. The researchers used an ultrasonic atomization technology to evaporate chemicals used in atomic layer deposition (ALD). ALD is a three-dimensional thin film deposition technique that plays an important role in microelectronics manufacturing.

(Funded by the National Science Foundation and the U.S. Department of Defense)

Researchers at Purdue University are taking cues from nature to develop 3D photodetectors for biomedical imaging. The researchers used some architectural features from spider webs to develop the technology. The assembly technique presented in this work enables the deployment of 2D deformable electronics in 3D architectures, which may foreshadow new opportunities to better advance the field of 3D electronic and optoelectronic devices.

(Funded by the National Science Foundation and the U.S. Department of Defense)

Researchers at Purdue University are taking cues from nature to develop 3D photodetectors for biomedical imaging. The researchers used some architectural features from spider webs to develop the technology. The assembly technique presented in this work enables the deployment of 2D deformable electronics in 3D architectures, which may foreshadow new opportunities to better advance the field of 3D electronic and optoelectronic devices.