News from the NNI Community - Research Advances Funded by Agencies Participating in the NNI
-
Ultrasound technology accelerates drying of renewable cellulose nanocrystals
(Funded by the U.S. Department of Energy)
Cellulose nanocrystals derived from renewable resources have shown great potential for use in composites, biomedical materials, and packaging. But a major challenge in the production of cellulose nanocrystals is the energy-intensive drying process. To address this issue, a team of researchers from the University of Illinois Urbana-Champaign, Purdue University, and North Carolina Agricultural and Technical State University has introduced a novel multi-frequency ultrasonic drying technology. This method not only accelerates the drying process but also reduces energy consumption, compared to traditional drying techniques.Categories: NNI-NEWS, U.S. Department of Energy -
Laser-induced graphene sensors made affordable with stencil masking
(Funded by the National Institutes of Health, the U.S. Department of Defense and the National Science Foundation)
Researchers at the University of Hawaiʻi at Manoa in Honolulu have unveiled a new technique that could make the manufacture of wearable health sensors more accessible and affordable. Producing these devices often requires specialized facilities and technical expertise, limiting their accessibility and widespread adoption. So, the researchers introduced a low-cost, stencil-based method for producing sensors made from laser-induced graphene, a key material used in wearable sensing. “This advancement allows us to create high-performance wearable sensors with greater precision and at a lower cost,” said Tyler Ray, the researcher who led this study. -
Building better bone grafts
(Funded by the U.S. Department of Defense and the National Institutes of Health)
Having already created a technology that makes bone scaffolds with collagen-like nanostructures, researchers from the University of Michigan have now regenerated bone by improving cell-matrix interactions. The latest discovery is especially beneficial for patients needing repairs involving larger amounts of bone. “What we invented are biodegradable polymer templates that contain peptides on nanofibers, acting like keys to open new gates to liberate the locked bone regeneration potential from the recipient’s own cells,” said Peter Ma, one of the scientists involved in this study. -
Manganese cathodes could boost lithium-ion batteries
(Funded by the U.S. Department of Energy)
Supplies of nickel and cobalt, which are commonly used in the cathodes of lithium-ion batteries, are limited. Now, new research led by researchers from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory opens up a potential low-cost, safe alternative in manganese, the fifth most abundant metal in the Earth’s crust. The researchers showed that manganese can be effectively used in emerging cathode materials called disordered rock salts. They used state-of-the-art electron microscopes to capture atomic-scale pictures of the manganese-based material in action and found that it formed a nanoscale semi-ordered structure that enhanced the battery performance.Categories: NNI-NEWS, U.S. Department of Energy -
Water-free manufacturing approach could help advance 2D electronics integration
(Funded by the National Institute of Standards and Technology and the National Science Foundation)
Researchers from Penn State, Purdue University, Intel Corporation (Santa Clara, CA), The Kurt J. Lesker Company (Jefferson Hills, PA), and National Yang Ming Chiao Tung University in Taiwan have developed a process to produce a “rust-resistant” coating with additional properties ideal for creating faster, more durable electronics. Traditional methods to protect two-dimensional (2D) semiconductor materials from rusting involve oxide-based coatings, but these processes often use water, which can accelerate the oxidation they aim to prevent. The team’s approach was to use amorphous boron nitride as a coating material, which was evenly coated on the 2D materials by using a new two-step atomic layer deposition method. -
Recharging mitochondria – nanoflowers offer a new way to simulate energy production to improve aging ailments
(Funded by the National Institutes of Health and the National Science Foundation)
Researchers from Texas A&M University have developed molybdenum disulfide nanoflowers that can stimulate mitochondrial regeneration, helping cells generate more energy. According to Akhilesh Gaharwar, one of the researchers involved in this study, the nanoflowers could offer new treatments for muscle dystrophy, diabetes, and neurodegenerative disorders by increasing ATP production, mitochondrial DNA, and cellular respiration. “This discovery is unique,” said Vishal Gohil, another researcher involved in the study. “We are not just improving mitochondrial function; we are rethinking cellular energy entirely. The potential for regenerative medicine is incredibly exciting.” -
Ventilator-on-a-chip compares injury caused by mechanical ventilation
(Funded by the National Institutes of Health and the U.S. Department of Defense)
Using a ventilator-on-a-chip developed at The Ohio State University, researchers have found that shear stress from the collapse and reopening of the air sacs is the most harmful type of damage. This miniature organ-on-a-chip model simulates lung injury during mechanical ventilation, said Samir Ghadiali, one of the scientists involved in this study. The ventilator-on-a chip’s measurement of real-time changes to cells was enabled by an innovative approach: growing human lung cells on a synthetic nanofiber membrane mimicking the complex lung matrix. This ventilator-on-a-chip is closer to the authentic ventilated lung microenvironment than any similar lung chip systems to date, the researchers said. -
Harnessing exosomes and hydrogels for advanced diabetic wound healing
(Funded by the U.S. Department of Energy and the National Science Foundation)
Researchers from New York University have begun to explore exosomes, tiny membrane-bound vesicles, as promising tools for wound healing. These nanovesicles carry various biological materials – nucleic acids, proteins, and lipids – allowing them to mediate intercellular communication and influence processes such as tissue repair. By combining them with hydrogels, which are composed of networks of cross-linked polymers, the researchers showed that hydrogel-exosome combinations consistently lead to faster wound closure than either hydrogels or exosomes used alone. -
In step toward solar fuels, durable artificial photosynthesis setup chains two carbons together
(Funded by the U.S. Department of Defense)
A key step toward reusing carbon dioxide to make sustainable fuels is chaining carbon atoms together, and an artificial photosynthesis system developed at the University of Michigan can bind two of them into hydrocarbons. The system produces ethylene – a hydrocarbon typically used in plastics – with efficiency, yield, and longevity above other artificial photosynthesis systems. The device absorbs light through two kinds of semiconductors: a forest of gallium nitride nanowires, each just 50 nanometers wide, and the silicon base on which they were grown. The reaction transforming water and carbon dioxide into ethylene takes place on copper clusters that dot the nanowires.Categories: NNI-NEWS, U.S. Department of Defense -
Designing a better water filter: A fabric-like filter to remove tiny plastics and lead from drinking water
(Funded by the National Science Foundation)
Researchers have developed an innovative nanofibrous membrane to remove microplastics from drinking water. Water filters on the market today can remove some contaminants, but they’re not designed to capture microplastics. The filter membrane is made from polyvinyl alcohol fibers, which are polymers currently used in biomedical applications. The team chose the material because it is low-cost and is not toxic to humans, animals, or plants. “The idea is to design a filter that can be attached to a faucet so it can remove microplastic and lead at the same time from tap water,” said Maryam Salehi, one of the researchers involved in this study.Categories: NNI-NEWS, U.S. National Science Foundation
News Categories
- Centers for Disease Control and Prevention
- National Aeronautics and Space Administration
- National Institute for Occupational Safety and Health
- National Institute of Standards and Technology
- National Institutes of Health
- U.S. Department of Agriculture
- U.S. Department of Defense
- U.S. Department of Energy
- U.S. Department of State
- U.S. Environmental Protection Agency
- U.S. Food and Drug Administration
- U.S. National Science Foundation
