Category: U.S. Department of Energy
-
Wastewater bacteria can break down plastic for food
(Funded by the National Science Foundation and the U.S. Department of Energy)
Researchers from Northwestern University, the University of Chicago, and the U.S. Department of Energyโs Oak Ridge National Laboratory have discovered how certain bacteria are breaking down plastic for food. First, they chew the plastic into small pieces, called nanoplastics. Then, they secrete a specialized enzyme that breaks down the plastic even further. Finally, the bacteria use a ring of carbon atoms from the plastic as a food source, the researchers found. The discovery opens new possibilities for developing bacteria-based engineering solutions to help clean up difficult-to-remove plastic waste, which pollutes drinking water and harms wildlife. -
Fused molecules could serve as building blocks for safer lithium-ion batteries
(Funded by the National Science Foundation, the U.S. Department of Energy, and the National Institutes of Health)
By fusing together a pair of contorted molecular structures, researchers from Cornell University, Rice University, the University of Chicago, and Columbia University have created a porous #crystal that can uptake #lithium-ion #electrolytes and transport them smoothly via one-dimensional #nanochannels โ a design that could lead to safer solid-state #LithiumIonBatteries. The researchers devised a method of fusing together two eccentric molecular structures that have complementary shapes: #macrocycles and #MolecularCages. “Both macrocycles and molecular cages have intrinsic pores where ions can sit and pass through,” said Yuzhe Wang, one of the scientists involved in this study. “By using them as the building blocks for porous crystals, the crystal would have large spaces to store ions and interconnected channels for ions to transport.” -
Beyond โone pore at a timeโ: New method of generating multiple, tunable nanopores
(Funded by the U.S. Department of Energy and the National Science Foundation)
Nanoporous membranes with holes smaller than one-billionth of a meter have powerful potential for decontaminating polluted water or for osmotic power generators. But these applications have been limited in part by the tedious process of tunneling individual sub-nanometer pores one by one. Now, researchers from the University of Chicago have found a novel path around this long-standing problem. They created a new method of pore generation that builds materials with intentional weak spots and then applies a remote electric field to generate multiple nanoscale pores all at once. -
Watch water form out of thin air
(Funded by the U.S. Department of Energy and the U.S. Department Defense)
For the first time ever, researchers have witnessed โ in real time and at the molecular-scale โ hydrogen and oxygen atoms merge to form tiny, nano-sized bubbles of water. The event occurred as part of a new Northwestern University study, during which scientists sought to understand how palladium, a rare metallic element, catalyzes the gaseous reaction to generate water. “Think of Matt Damon’s character, Mark Watney, in the movie ‘The Martianโ,โ said Northwestern’s Vinayak Dravid, senior author of the study. โHe burned rocket fuel to extract hydrogen and then added oxygen from his oxygenator. Our process is analogous, except we bypass the need for fire and other extreme conditions. We simply mixed palladium and gases together.” Dravid is the founding director of the Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, where the study was conducted. -
Ultrasound technology accelerates drying of renewable cellulose nanocrystals
(Funded by the U.S. Department of Energy)
Cellulose nanocrystals derived from renewable resources have shown great potential for use in composites, biomedical materials, and packaging. But a major challenge in the production of cellulose nanocrystals is the energy-intensive drying process. To address this issue, a team of researchers from the University of Illinois Urbana-Champaign, Purdue University, and North Carolina Agricultural and Technical State University has introduced a novel multi-frequency ultrasonic drying technology. This method not only accelerates the drying process but also reduces energy consumption, compared to traditional drying techniques.
