Category: NNI-NEWS

  • Platform combines graphene oxide with antibodies to enhance CAR-T cell therapy

    (Funded by the National Institutes of Health)
    Researchers from the University of California, Los Angeles, have unveiled a new platform that combines a flexible material called graphene oxide with antibodies to closely mimic the natural interactions between immune cells. The investigators found that this platform shows a high capacity for stimulating T cells to reproduce, while preserving their versatility and potency. The advance could make CAR-T cell therapy more effective and accessible. In this type of therapy, patients’ own immune cells are collected, genetically engineered so that they specifically target cancer cells, and then returned to the body. The new technology enhanced the efficiency of engineering immune cells, leading to a five-fold increase in CAR-T cell production, compared to the standard process.

  • Paper-based sensor offers rapid cardiac diagnostics in 15 minutes

    (Funded by the National Science Foundation)
    In a significant advancement for point-of-care medical diagnostics, a team of researchers from the University of California, Los Angeles, has introduced a deep learning-enhanced, paper-based vertical flow assay capable of detecting cardiac troponin I with high sensitivity. Troponin I is a protein released when the heart muscle has been damaged. The innovative assay integrates deep learning algorithms with cutting-edge nanoparticle amplification chemistry and could enable access to rapid and reliable cardiac diagnostics, particularly in resource-limited settings. “Our goal was to design a system that could be used not only in hospitals but also in clinics, pharmacies, and even in ambulances,” said Gyeo-Re Han, one of the scientists involved in this study.

  • Wastewater bacteria can break down plastic for food

    (Funded by the National Science Foundation and the U.S. Department of Energy)
    Researchers from Northwestern University, the University of Chicago, and the U.S. Department of Energy’s Oak Ridge National Laboratory have discovered how certain bacteria are breaking down plastic for food. First, they chew the plastic into small pieces, called nanoplastics. Then, they secrete a specialized enzyme that breaks down the plastic even further. Finally, the bacteria use a ring of carbon atoms from the plastic as a food source, the researchers found. The discovery opens new possibilities for developing bacteria-based engineering solutions to help clean up difficult-to-remove plastic waste, which pollutes drinking water and harms wildlife.

  • Fused molecules could serve as building blocks for safer lithium-ion batteries

    (Funded by the National Science Foundation, the U.S. Department of Energy, and the National Institutes of Health)
    By fusing together a pair of contorted molecular structures, researchers from Cornell University, Rice University, the University of Chicago, and Columbia University have created a porous #crystal that can uptake #lithium-ion #electrolytes and transport them smoothly via one-dimensional #nanochannels – a design that could lead to safer solid-state #LithiumIonBatteries. The researchers devised a method of fusing together two eccentric molecular structures that have complementary shapes: #macrocycles and #MolecularCages. “Both macrocycles and molecular cages have intrinsic pores where ions can sit and pass through,” said Yuzhe Wang, one of the scientists involved in this study. “By using them as the building blocks for porous crystals, the crystal would have large spaces to store ions and interconnected channels for ions to transport.”

  • Faster, more sensitive lung cancer detection from a blood draw

    (Funded by the National Science Foundation, the U.S. Department of Defense, and the National Institutes of Health)
    A new way of diagnosing lung cancer with a blood draw is 10 times faster and 14 times more sensitive than earlier methods, according to researchers from the University of Michigan and Rensselaer Polytechnic Institute. The microchip that the researchers developed captures nanoscale particles called exosomes – tiny packages released by cells – from blood plasma to identify signs of lung cancer. Although exosomes from healthy cells move important proteins or DNA and RNA fragments throughout the body, exosomes from cancer cells can help tumors spread by preparing tissues to accept tumor cells before they arrive. Also, cancer cell exosomes can be distinguished from healthy cell exosomes because proteins on the surfaces of cancer cell exosomes are often mutated.