Category: NNI-NEWS

  • Physicists explain how fractional charge in pentalayer graphene could work

    (Funded by the National Science Foundation)
    Physicists at the Massachusetts Institute of Technology (MIT) have taken a key step toward solving the puzzle of what leads electrons to split into fractions of themselves. The new work is an effort to make sense of a discovery that was reported earlier this year by other physicists at MIT, who found that electrons appear to exhibit “fractional charge” in pentalayer graphene – a configuration of five graphene layers that are stacked atop a similarly structured sheet of boron nitride. Through calculations of quantum mechanical interactions, the scientists showed that the electrons form a sort of crystal structure, the properties of which are ideal for fractions of electrons to emerge. “This crystal has a whole set of unusual properties that are different from ordinary crystals, and leads to many fascinating questions for future research,” said Senthil Todadri, the scientist who led the new study.

  • New, sprayable psoriasis drug delivery system uses ‘trojan horse’ style of nanoparticle

    (Funded by the National Institutes of Health and the National Science Foundation)
    Researchers at the University of Massachusetts Amherst and the University of Massachusetts-Chan Medical School in Springfield, MA, have invented a new, sprayable delivery system for psoriasis medication that can be applied easily and locally to psoriasis lesions. The delivery system makes use of nanoparticles that contain psoriasis drugs, and these nanoparticles act like a trojan horse – the immune cells do not recognize the nanoparticles as a threat, but the medication they carry disrupts the overactive immune response. The researchers designed and tested nanoparticles in different shapes: rods, ellipses and spheres and discovered that nanorods inhibited 3.8 times more inflammation due to psoriasis than nanoellipses and 4.5 times more than nanospheres.

  • New discovery may lead to more effective treatment for cardiovascular disease

    (Funded by the National Institutes of Health)
    Researchers from Case Western Reserve University, the University of Virginia, Cleveland Clinic, the University of Maryland School of Medicine, University Hospitals Cleveland Medical Center, the Louis Stokes Veterans Affairs Medical Center (Cleveland, OH), and CVPath Institute, Inc. (Gaithersburg, MD) have identified a new target to treat atherosclerosis, a condition where plaque clogs arteries and causes major cardiac issues, including stroke and heart attack. The researchers identified an inflammation-reducing molecule, called itaconate, and developed a new lipid nanoparticle-based treatment that allows itaconate to accumulate in plaque and bone marrow, where it reduces inflammation. “We’ve found that itaconate is crucial to the diet’s ability to stabilize plaques and reduce inflammation, which has been a mystery until now,” said Andrei Maiseyeu, one of the scientists involved in this study. “This discovery marks a major leap forward in the understanding of how diet-induced plaque resolution occurs at a molecular level.”

  • Improved lipid-polymer nanoparticle could advance inhalable mRNA medications and vaccines

    (Funded by the National Institutes of Health)
    Many messenger RNA (mRNA) medicines contain tiny fatty spheres, known as lipid nanoparticles, that encode proteins used by the body to treat or prevent a variety of illnesses. But most versions of lipid nanoparticles for the delivery of mRNA don’t work for inhalable medications, because the nanoparticles clump together or increase in size when sprayed into the air. Now, researchers at the Massachusetts Institute of Technology have shown that a polymer with repeating units of positively and negatively charged components – called a zwitterionic polymer – can enable mRNA-containing lipid nanoparticles to withstand nebulization (turning a liquid into a mist).

  • Scientists Capture Images of Electron Molecular Crystals

    (Funded by the U.S. Department of Energy)
    Researchers from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory, the University of California at Berkeley, the Massachusetts Institute of Technology, Arizona State University, and the National Institute for Materials Science in Tsukuba, Japan, have captured direct images of a new quantum phase of an electron solid – the Wigner molecular crystal. Whereas Wigner crystals are characterized by a honeycomb arrangement of electrons, Wigner molecular crystals have a highly ordered pattern of artificial “molecules” made of two or more electrons. The scientists formed a nanomaterial, called a “twisted tungsten disulfide moiré superlattice,” and doped it with electrons, which filled each 10-nanometer-wide unit cell of the material with just two or three electrons. In a surprising result, these filled unit cells formed an array of moiré electron molecules throughout the superlattice – resulting in a Wigner molecular crystal.