Category: National Institutes of Health

  • UVA Engineers Design Lookalike Drug Nanocarrier to Treat Lung Diseases

    (Funded by the National Institutes of Health and the National Science Foundation)
    Engineers at the University of Virginia have created a drug nanocarrier designed to cure chronic or deadly respiratory diseases by slipping past the lungs’ natural defenses. The engineers successfully demonstrated the nanocarrier’s effectiveness using a device that captures the geometric and biological features of human airways. “We think this innovation not only promises better treatments of lung diseases with reduced side effects, but also opens possibilities for treating conditions affecting mucosal surfaces throughout the body,” said Liheng Cai, one of the engineers involved in this study.

  • Tick-borne red meat allergy prevented in mice through new nanoparticle treatment

    (Funded by the National Institutes of Health)
    Scientists from the University of Michigan and the University of Virginia have shown that nanoparticles delivered intravenously in mice can block allergic reactions to red meat caused by the bite of the lone star tick. The nanoparticles contain allergens that re-train the immune system to ignore the type of sugar found in beef, pork, and lamb. Once the nanoparticles were delivered to the mice, the scientists exposed these mice to ticks to trigger an immune response. In 10 out of 12 mice, a reduced immune response was recorded.

  • New nanoparticle delivery method targets sickle cell mutations in bone marrow

    (Funded by the National Institutes of Health)
    Researchers from Johns Hopkins University, the University of Texas Southwestern Medical Center, St. Jude Children’s Research Hospital, and Harvard University have developed nanoparticles that can send gene treatment directly to various types of cells in bone marrow to correct mutations that cause sickle cell disease. The researchers used CRISPR/Cas and base gene-editing techniques in a mouse model of sickle cell disease to activate a form of hemoglobin and correct the sickle cell mutation.

  • New technique to diagnose cancer metastasis uses origami nanoprobes

    (Funded by the U.S. Department of Defense and the National Institutes of Health)
    Engineers at Johns Hopkins University have created a new optical tool that could improve cancer imaging. Their approach uses tiny nanoprobes that light up when they attach to aggressive cancer cells, helping clinicians distinguish between localized cancers and those that are metastatic and have the potential to spread throughout the body. The team found that unlike CT or MRI scans, the nanoprobes effectively and consistently bound to metastatic prostate cancer cells and differentiated between them and non-metastatic cells.

  • New nanoparticles boost immune system in mice to fight melanoma and breast cancer

    (Funded by the National Institutes of Health and the National Science Foundation)
    Researchers from Vanderbilt University, Yale University, Northwestern University, and AstraZeneca have developed a set of nanoparticles that stimulate the immune system in mice to fight cancer and may eventually do the same in humans. The nanoparticles delivered a nucleic acid molecule that triggers an immune response that is normally used by the body to recognize foreign viruses to help the immune system mount a defense, according to the researchers.