Biomedical

Biomedical includes nanomedicine, vaccines, wearable electronics, implants, lab-grown tissues, nanorobots, microfluidics, biotechnology, imaging

Experimental nanomedicine delivers chemo drugs directly to tumors in mice

Researchers at the University of Chicago Medicine Comprehensive Cancer Center have developed a nanomedicine that increases the penetration and accumulation of chemotherapy drugs in tumor tissues and effectively kills cancer cells in mice. The researchers looked at a particular pathway known as stimulator of interferon genes (STING), whose activation increases the leakiness of blood vessels near the tumor.

Separating viruses from saliva with sound waves for therapeutic studies

Researchers from Duke University, the University of California, Los Angeles, the Icahn School of Medicine at Mount Sinai, and Harvard Medical School have developed a platform that uses sound waves as acoustic tweezers to sort viruses from other compounds in a liquid. The platform consists of a rectangular chip with a sample-loading inlet at one end and separate virus and waste outlets at the other end. Two acoustic beams were applied across the chip, perpendicular to the sample flow.

Novel coupled nanopore platform offers greater precision for detecting molecules

Researchers from the University of Pennsylvania have demonstrated a new kind of nanopore platform that consists of two or more nanopores stacked just nanometers apart, allowing for more precise detection and control of DNA as it wiggles through. “With current platforms, when molecules like DNA are placed near the nanopores, it’s sort of like having spaghetti in a pot—tangled and difficult to work with, let alone guiding through one hole,” explains Dimitri Monos, one of the scientists involved in this study.

Heman Bekele is Time's 2024 Kid of the Year

This article features Heman Bekele, a high school student who was named “Kid of the Year 2024” by TIME magazine. Bekele is working on a soap that that could one day treat, and even prevent, multiple forms of skin cancer. His idea is to combine the soap with a lipid-based nanoparticle that would linger on the skin when the soap is washed away. The article is accompanied by a short video interview with Bekele.

Alzheimer’s drug may someday help save lives by inducing a state of ‘suspended animation’

Researchers from Harvard University and the University of Castilla-La Mancha in Spain have been able to successfully put tadpoles into a hibernation-like torpor state using donepezil, a drug approved by the U.S. Food and Drug Administration to treat Alzheimer's. This advance means that donepezil could potentially be repurposed for use in emergency situations to prevent irreversible organ injury while a person is being transported to a hospital.

New technique to diagnose cancer metastasis uses origami nanoprobes

Engineers at Johns Hopkins University have created a new optical tool that could improve cancer imaging. Their approach uses tiny nanoprobes that light up when they attach to aggressive cancer cells, helping clinicians distinguish between localized cancers and those that are metastatic and have the potential to spread throughout the body. The team found that unlike CT or MRI scans, the nanoprobes effectively and consistently bound to metastatic prostate cancer cells and differentiated between them and non-metastatic cells.

New nanoparticle delivery method targets sickle cell mutations in bone marrow

Researchers from Johns Hopkins University, the University of Texas Southwestern Medical Center, St. Jude Children's Research Hospital, and Harvard University have developed nanoparticles that can send gene treatment directly to various types of cells in bone marrow to correct mutations that cause sickle cell disease. The researchers used CRISPR/Cas and base gene-editing techniques in a mouse model of sickle cell disease to activate a form of hemoglobin and correct the sickle cell mutation. 

New nanoparticles boost immune system in mice to fight melanoma and breast cancer

Researchers from Vanderbilt University, Yale University, Northwestern University, and AstraZeneca have developed a set of nanoparticles that stimulate the immune system in mice to fight cancer and may eventually do the same in humans. The nanoparticles delivered a nucleic acid molecule that triggers an immune response that is normally used by the body to recognize foreign viruses to help the immune system mount a defense, according to the researchers.

UC Irvine scientists create material that can take the temperature of nanoscale objects

University of California, Irvine scientists have discovered a one-dimensional nanoscale material whose color changes as temperature changes. "We found that we can make really small and sensitive thermometers," said Maxx Arguilla, one of the scientists involved in this study. Arguilla likened the thermometers to "nano-scale mood rings," referring to the jewelry that changes color depending on the wearer's body temperature.

Tick-borne red meat allergy prevented in mice through new nanoparticle treatment

Scientists from the University of Michigan and the University of Virginia have shown that nanoparticles delivered intravenously in mice can block allergic reactions to red meat caused by the bite of the lone star tick. The nanoparticles contain allergens that re-train the immune system to ignore the type of sugar found in beef, pork, and lamb. Once the nanoparticles were delivered to the mice, the scientists exposed these mice to ticks to trigger an immune response. In 10 out of 12 mice, a reduced immune response was recorded.