Good vibrations: Scientists discover a method for exciting phonon-polaritons

Date posted
Funding Agency
(Funded by the U.S. Department of Defense and the U.S. National Science Foundation)

Researchers from the City University of New York, Yale University, Caltech, Kansas State University, and international collaborators have discovered a new way of generating phonon-polaritons, a unique type of electromagnetic wave that occurs when light interacts with vibrations in a material’s crystal lattice structure. This advance could pave the way for cheaper, smaller long-wave infrared light sources and more efficient device cooling. The researchers made that discovery by using a thin layer of graphene sandwiched between two hexagonal boron nitride slabs. Until now, exciting and detecting phonon-polariton waves has been expensive – typically involving costly mid-infrared or terahertz lasers and near-field scanning probes – but in this study, the researchers used a cheaper alternative: an electrical current generated by applying an electric field to the graphene.