Using an approach called DNA origami, scientists at Caltech have developed a technique that could lead to cheaper, reusable biomarker sensors for quickly detecting proteins in bodily fluids, eliminating the need to send samples out to lab centers for testing. DNA origami enables long strands of DNA to fold, through self-assembly, into molecular structures at the nanoscale. In this study, DNA origami was used to create a lilypad-like structure – a flat, circular surface about 100 nanometers in diameter, tethered by a DNA linker to a gold electrode. Both the lilypad and the electrode have short DNA strands available to bind with an analyte, a molecule of interest in solution – whether that be a molecule of DNA, a protein, or an antibody.
An official website of the United States government.