Self-sealing, atomically thin dialysis membranes: Proteins transform leakage into filtration advantage

Date posted
Funding Agency
(Funded by the U.S. Department of Energy and the National Science Foundation)

Researchers from Vanderbilt University have developed advanced dialysis membranes using an atomically thin material called graphene. These innovative membranes leverage a protein-enabled sealing mechanism that works as follows: When proteins escape through larger pores, they react with molecules on the other side of the graphene membrane. This reaction triggers a sealing process, selectively closing larger pores while preserving smaller ones. This self-sealing capability ensures precise size-selective filtration and improves the membrane's overall effectiveness. The defect-sealed membranes remained stable for up to 35 days and consistently outperformed state-of-the-art commercial dialysis membranes. 

Keywords