News from the NNI Community - Research Advances Funded by Agencies Participating in the NNI
-
W&M researchers progress in unraveling mysteries of invisible spider web ‘super fibers’
(Funded by the National Science Foundation)
Researchers at William & Mary have measured the strength and stretchability of minuscule nanofibrils present in the silk spun by the southern house spider. The core of a spider silk strand is composed of two distinct warps that form helical loops around a central foundation fiber. The tiniest fibers, nanofibrils, are spun into a mesh that surrounds those supporting structures. The researchers found that the nanofibrils in the southern house spider’s silk could stretch 11 times their original length, more than twice the amount of any spider silk previously tested. “As amazing as spider silk as a whole is, looking at these tiny fibrils, they are even stretchier,” said Hannes Schniepp, one of the scientists involved in this study.Categories: NNI-NEWS, U.S. National Science Foundation -
Off the clothesline, on the grid: MXene nanomaterials enable wireless charging in textiles
(Funded by the National Institutes of Health)
Researchers from Drexel University, the University of Pennsylvania, and Accenture Labs (San Francisco, CA), and Corporal Michael J. Crescenz Veterans Affairs Medical Center (Philadelphia, PA) have built a textile energy grid that can be wirelessly charged. The grid was printed on nonwoven cotton textiles with an ink composed of MXene, a type of nanomaterial that is both conductive and durable enough to withstand the folding, stretching, and washing that clothing endures. The proof-of-concept represents an important development for wearable technology, which, at present, requires complicated wiring and is limited by the use of rigid, bulky batteries that are not fully integrated into garments.Categories: National Institutes of Health, NNI-NEWS -
Farewell frost! New surface prevents frost without heat
(Funded by the National Science Foundation)
Researchers from Northwestern University and the University of California, Los Angeles, have developed a new strategy that prevents frost formation before it begins. The researchers discovered that tweaking the texture of any surface and adding a thin layer of graphene oxide prevents frost from forming on the surface for one week, or potentially even longer. This is 1,000 times longer than current, state-of-the-art anti-frosting surfaces. As an added bonus, the new scalable surface design also is resistant to cracks, scratches, and contamination.Categories: NNI-NEWS, U.S. National Science Foundation -
Potential of MXenes for nanotech applications
(Funded by the National Science Foundation)
Researchers from the University of Nebraska-Lincoln and South Dakota School of Mines and Technology are exploring the physical properties of two-dimensional materials called MXenes. Previous research by the Nebraska team on other MXene materials revealed their n-type (electron-rich) character and decreased conductivity in response to light. In contrast, the new material is the first MXene with demonstrated p-type (electron-deficient) property and increasing conductivity under illumination. “Previously studied MXenes were all n-type, but now we demonstrate the first p-type MXene,” said Alexander Sinitskii, the scientist who led this study. “This should enable complex structures where complementary MXenes are used together to achieve new electronic functionalities.”The researchers performed experiments at the Nebraska Center for Materials and Nanoscience, a user facility that is part of the National Science Foundation-funded National Nanotechnology Coordinated Infrastructure.Categories: NNI-NEWS, U.S. National Science Foundation -
Implantable microparticles can deliver two cancer therapies at once
(Funded by the National Institutes of Health)
Researchers at the Massachusetts Institute of Technology have designed tiny particles that can be implanted at a tumor site, where they deliver two types of therapy: heat and chemotherapy. In a study of mice, the researchers showed that this therapy completely eliminated tumors in most of the animals and significantly prolonged their survival. To create a microparticle that could deliver both of these treatments, the researchers combined an inorganic material called molybdenum disulfide nanosheets with one of two drugs: doxorubicin or violacein. To make the particles, molybdenum disulfide and the drug are mixed with a polymer called polycaprolactone and then dried into a film that can be pressed into microparticles of different shapes and sizes. Once injected into a tumor site, the particles remain there throughout the treatment, and an external near-infrared laser is used to heat up the particles.Categories: National Institutes of Health, NNI-NEWS -
Researchers unlock a ‘new synthetic frontier’ for quantum dots
(Funded by the U.S. Department of Energy, U.S. Department of Defense, and the National Science Foundation)
Researchers from the University of Chicago; the University of California, Berkeley; Northwestern University; the University of Colorado Boulder; and the U.S. Department of Energy’s Argonne National Laboratory have developed a new technique for growing quantum dots – nanocrystals used in lasers, quantum light-emitting diode (QLED) televisions, and solar cells. The researchers replaced organic solvents typically used to create quantum dots with molten salt – literally superheated sodium chloride of the type sprinkled on baked potatoes. “Sodium chloride is not a liquid in your mind, but assume you heat it to such a crazy temperature that it becomes a liquid … [N]obody ever considered these liquids as media” for the synthesis of quantum dots, said Dmitri Talapin, one of the scientists involved in this study. -
Room temperature electrical control could heat up future technology development
(Funded by the National Science Foundation and the U.S. Department of Defense)
Researchers from Penn State, the Massachusetts Institute of Technology (MIT) (including @MIT_ISN), and North Carolina Agricultural and Technical State University have discovered a different version of the Hall effect, called the nonreciprocal Hall effect, which, unlike the conventional Hall effect, does not require a magnetic field. In particular, in this case, the Hall voltage is proportional to the square of the current instead of being proportional to the current. Also, unlike the conventional Hall effect, which is driven by a force induced by the magnetic field, the nonreciprocal Hall effect arises from flowing electrons interacting with platinum nanoparticles. This discovery could lead to applications in the development of quantum communication and harvesting of energy via radio frequencies. -
Advancing drug delivery: New framework links lipid nanoparticle structure to immune response
(Funded by the National Institutes of Health and the National Science Foundation)
Researchers from Carnegie Mellon University and the Indian Institute of Technology Bombay in Mumbai, India, have linked the immune response caused by lipid nanoparticles to their lipid chemistry. They found that some lipid structures bind strongly to receptors and others bind weakly. The strong interactions trigger the receptor and ultimately the immune response. The findings will help engineers tailor immune responses when designing lipid nanoparticles for drug delivery. “For vaccines, we might want something that’s more immunogenic, so that the vaccine responds better,” said Namit Chaudhary, one of the scientists involved in this study. “But if we are delivering something to the brain or the liver, for example, we might not want to evoke substantial immune responses that might cause toxicity.” -
Kory Burns Leads AI-enhanced Breakthrough that Illuminates Materials
(Funded by the U.S. Department of Energy)
Researchers from the University of Virginia, the University of California-Berkeley, the University of Florida, the University of Tennessee-Knoxville, the University of Michigan, and the U.S. Department of Energy’s Sandia National Laboratories and Center for Integrated Nanotechnologies have developed an innovative technique to better determine the nanoscale effects of radiation on materials. Using advanced time-series imaging techniques with a transmission electron microscope, the team compiled more than 1,000 images capturing more than 250,000 defects formed during ion irradiation. The study revealed that defects in copper and gold exhibit different behaviors compared to those in palladium. This distinction underscores the need for specialized analytical models to accurately study these materials under radiation.Categories: NNI-NEWS, U.S. Department of Energy -
Specially designed transistors allow researchers to ‘hear’ defects in a promising nanomaterial
(Funded by the National Science Foundation and the U.S. Department of Energy)
Researchers from New York University, the U.S. Department of Energy’s Brookhaven National Laboratory, the Korea Advanced Institute of Science and Technology, and the National Institute for Materials Science in Tsukuba, Japan, have pioneered a new technique to identify and characterize atomic-scale defects in a two-dimensional (2D) material called hexagonal boron nitride. The team was able to detect the presence of individual carbon atoms replacing boron atoms in this material. “In this project, we essentially created a stethoscope for 2D materials,” said Davood Shahrjerdi, one of the researchers involved in this study. “By analyzing the tiny and rhythmic fluctuations in electrical current, we can ‘perceive’ the behavior of single atomic defects.”
News Categories
- Centers for Disease Control and Prevention
- National Aeronautics and Space Administration
- National Institute for Occupational Safety and Health
- National Institute of Standards and Technology
- National Institutes of Health
- U.S. Department of Agriculture
- U.S. Department of Defense
- U.S. Department of Energy
- U.S. Department of State
- U.S. Environmental Protection Agency
- U.S. Food and Drug Administration
- U.S. National Science Foundation
