News from the NNI Community - Research Advances Funded by Agencies Participating in the NNI

  • Surprising longevity of nanoparticle paste offers hope for surgery-sparing technique

    (Funded by the National Institutes of Health)
    Scientists from the University of Virginia, the University of Wisconsin-Madison, The Ohio State University, Northwestern University, the University of Tokyo, and the Sakakibara Heart Institute in Tokyo have developed a nanotechnology-based drug delivery system to save patients from repeated surgeries. The approach would allow surgeons to apply a paste of nanoparticles containing hydrogel on transplanted veins to prevent the formation of harmful blockages inside the veins. Not only did this innovation, dubbed “Pericelle,” work at three months – when the applied drug supply ran out – but it continued to work at six months and was still working at nine months. The scientists can’t fully explain the unexpectedly durable benefits, but they are excited about what it suggests for the potential of their technique.

  • Video: Tracking disease progression in technicolor

    (Funded by the U.S. National Science Foundation, the U.S. Department of Defense, and the Centers for Disease Control and Prevention)
    Researchers at Penn State have developed novel contrast agents that target two proteins implicated in osteoarthritis, a degenerative joint disease. By marking the proteins with the contrast agents, which comprise newly designed metal nanoprobes, the researchers can use advanced imaging, called photon-counting computed tomography, to simultaneously track separate biological processes in color, which, together, reveal more about the disease’s progression than a traditional scan. “This high-resolution … imaging approach could potentially be used to image multiple biological targets, thus enabling disease progression tracking over time,” said Dipanjan Pan, one of the scientists involved in this study. Read additional details about the research here: https://www.psu.edu/news/research/story/new-technique-allows-technicolor-imaging-degenerative-joint-disease.

  • Escaping the endosome: BEND lipids improve LNP mRNA delivery and gene editing

    (Funded by the U.S. National Science Foundation and the National Institutes of Health)
    A few years ago, researchers at Carnegie Mellon University made an intriguing discovery: adding a branch to the end of lipid nanoparticles’ normally linear lipid tails dramatically improved messenger RNA (mRNA) delivery. Now, researchers at the University of Pennsylvania have tested branched lipids in a variety of experiments and found that these lipids reliably outperform even the lipid nanoparticles used by Moderna and Pfizer/BioNTech, the makers of the COVID-19 vaccines. The researchers hope the branched lipids will not only improve lipid nanoparticle delivery but also inspire a new approach to designing lipids, moving away from trial-and-error methods.

  • Creating nanoislands for better platinum catalysts

    (Funded by the U.S. Department of Energy and the U.S. National Science Foundation)
    Researchers from the University of California, Davis, have developed a new technique to trap clusters of platinum atoms in nanoscale islands. Previous work had shown that platinum arranged in clusters of a few atoms on a surface makes a better hydrogenation catalyst than either single platinum atoms or larger nanoparticles of platinum. But such small clusters tend to clump easily into larger particles, losing efficiency. So, the researchers decided to “trap” platinum clusters on a tiny island of cerium oxide supported on a silica surface and noticed that such clusters showed good catalytic activity in hydrogenation of ethylene.

  • Basic science; Everyday materials and infrastructure

    (Funded by the U.S. Department of Energy and the U.S. National Science Foundation)
    Researchers from the University of California, Davis, have developed a new technique to trap clusters of platinum atoms in nanoscale islands. Previous work had shown that platinum arranged in clusters of a few atoms on a surface makes a better hydrogenation catalyst than either single platinum atoms or larger nanoparticles of platinum. But such small clusters tend to clump easily into larger particles, losing efficiency. So, the researchers decided to “trap” platinum clusters on a tiny island of cerium oxide supported on a silica surface and noticed that such clusters showed good catalytic activity in hydrogenation of ethylene.

  • Self-sealing, atomically thin dialysis membranes: Proteins transform leakage into filtration advantage

    (Funded by the U.S. Department of Energy and the National Science Foundation)
    Researchers from Vanderbilt University have developed advanced dialysis membranes using an atomically thin material called graphene. These innovative membranes leverage a protein-enabled sealing mechanism that works as follows: When proteins escape through larger pores, they react with molecules on the other side of the graphene membrane. This reaction triggers a sealing process, selectively closing larger pores while preserving smaller ones. This self-sealing capability ensures precise size-selective filtration and improves the membrane’s overall effectiveness. The defect-sealed membranes remained stable for up to 35 days and consistently outperformed state-of-the-art commercial dialysis membranes.

  • Scientists design peptides to enhance drug efficacy

    (Funded by the U.S. Department of Defense and the National Institutes of Health)
    Scientists from the City University of New York, the Memorial Sloan Kettering Cancer Center, and Weill Cornell Medicine have developed a groundbreaking approach using nanoparticles that are primarily composed of a drug and a thin peptide coating which improves solubility, enhances stability in the body, and optimizes delivery to targeted areas. In leukemia models, the nanoparticles were more effective at shrinking tumors compared to the drug alone. “Using specially designed peptides, we can build nanomedicines that make existing drugs more effective and less toxic and even enable the development of drugs that might not be able to work without these nanoparticles,” said Daniel Heller, one of the scientists involved in this study.

  • Scientists at Montana State reveal potential source of light for quantum technologies

    (Funded by the U.S. Department of Energy and the U.S. National Science Foundation)
    Scientists from Montana State University, Columbia University, the Massachusetts Institute of Technology, Pennsylvania State University, North Carolina State University, the Honda Research Institute in San Jose, CA, and the National University of Singapore have enabled the emission of single photons of light in ultra small, two-dimensional, ribbon-shaped materials measuring one atom thick and tens of atoms wide – about a thousand times narrower than the width of a human hair. Although the ability to emit single photons was known to occur in large sheets of two-dimensional materials, the observation made in this study is the first demonstration that the ability to emit single photons also occurs in much smaller ribbon structures.

  • Deep-ultraviolet laser microscope reveals diamond’s nanoscale transport behaviors

    (Funded by the U.S. National Science Foundation)
    Researchers from the Joint Institute for Laboratory Astrophysics (JILA) (a joint institute of the University of Colorado Boulder and the National Institute of Standards and Technology), KMLabs Inc. in Boulder, CO, and 3M Center in St. Paul, MN, have developed a novel microscope that makes examining ultrawide-bandgap semiconductors – which have a relatively large energy gap between the valence and conduction bands – possible on an unprecedented scale. The microscope uses high-energy deep ultraviolet laser light to create a nanoscale interference pattern on the material’s surface, heating it in a controlled, periodic pattern. Observing how this pattern fades over time provides insights into the electronic, thermal, and mechanical properties at spatial resolutions as fine as 287 nanometers, well below the wavelength of visible light.

  • Mosaic nanoparticle vaccine approach could help combat future coronavirus pandemics

    (Funded by the National Institutes of Health)
    A new experimental vaccine developed by researchers from the Massachusetts Institute of Technology, Massachusetts General Hospital, Caltech, and the University of Cambridge in the United Kingdom could offer protection against emerging variants of SARS-CoV-2, as well as related coronaviruses, known as sarbecoviruses, that could spill over from animals to humans. Sarbecoviruses include SARS-CoV-2 (the virus that causes COVID-19) and the virus that led to the outbreak of the original SARS in the early 2000s. By attaching up to eight different versions of sarbecovirus receptor-binding proteins to nanoparticles, the researchers created a vaccine that generates antibodies that recognize regions of receptor-binding proteins that tend to remain unchanged across all strains of the viruses.


News Categories