Category: U.S. Department of Energy

  • Nanodiamonds in water droplets boost quantum sensing precision

    (Funded by the U.S. Department of Defense and the U.S. Department of Energy)
    Scientists from the U.S. Department of Energy’s Berkeley National Laboratory; the University of California, Berkeley; and Adamas Nanotechnologies Inc. in Raleigh, NC, have encased nanodiamonds – diamonds that are less than 100 nanometers in size – in tiny moving droplets of water to improve quantum sensing, a technology that uses quantum mechanics to measure physical quantities with high precision. As the droplets flowed past a laser and were hit by microwaves, the nanodiamonds gave off light. The amount of light in the presence of a microwave field was related to the materials around the nanodiamond, letting scientists determine whether a chemical of interest was nearby.

  • Single qubit sensing puts new spin on quantum materials discovery

    (Funded by the U.S. Department of Energy and the U.S. National Science Foundation)
    Researchers from the U.S. Department of Energy’s (DOE) Oak Ridge National Laboratory (ORNL), Purdue University, and the University of Illinois Urbana−Champaign have used a nanoscale quantum sensor to measure spin fluctuations near a phase transition in a magnetic thin film. Thin films with magnetic properties at room temperature are essential for data storage, sensors and electronic devices because their magnetic properties can be precisely controlled and manipulated. The researchers used a specialized instrument called a scanning nitrogen-vacancy center microscope at the Center for Nanophase Materials Sciences, a DOE Office of Science user facility at ORNL. A nitrogen-vacancy center is an atomic-scale defect in diamond in which a nitrogen atom takes the place of a carbon atom, and a neighboring carbon atom is missing, creating a special configuration of quantum spin states.

  • New photon-avalanching nanoparticles could advance next-generation optical computers

    (Funded by the U.S. Department of Energy, the U.S. Department of Defense, and the U.S. National Science Foundation)
    Researchers from the Molecular Foundry, a user facility at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory, Columbia University, and Universidad Autónoma de Madrid in Spain have developed a new optical computing material from photon-avalanching nanoparticles. This approach offers a path toward realizing smaller, faster components for next-generation computers by taking advantage of intrinsic optical bistability – a property that allows a material to use light to switch between two different states, such as glowing brightly or not at all. For decades, researchers have sought ways to make a computer that uses light instead of electricity. But in previous studies, optical bistability had almost exclusively been observed in bulk materials that were too big for a microchip and challenging to mass produce. Now, the researchers suggest that the new photon-avalanching nanoparticles could overcome these challenges in realizing optical bistability at the nanoscale.

  • MIT physicists find unexpected crystal of electrons in an ultrathin material

    (Funded by the U.S. Department of Energy)
    Scientists from the Massachusetts Institute of Technology and the National Institute for Materials Science in Tsukuba, Japan, have discovered that electrons can form crystalline structures in materials composed of either four or five layers of graphene. (Graphene is a one-atom-thick layer of carbon atoms arranged in hexagons, which looks like a honeycomb structure.) Last year, the scientists reported that electrons became fractions of themselves upon applying a current to a material composed of rhombohedral pentalayer graphene and hexagonal boron nitride. This time, the scientists have shown that electrons can become fractions of themselves without a magnetic field. They also found that what they saw last time can be understood to emerge in an electron “liquid” phase, analogous to water, and what they have now observed can be interpreted as an electron “solid” phase that looks like the formation of electronic “ice.”

  • Searching for a universal principle for unconventional superconductivity

    (Funded by the U.S. Department of Energy and the U.S. National Science Foundation)
    Researchers from the University of Connecticut; Harvard University; the Massachusetts Institute of Technology; RTX BBN Technologies in Arlington, VA; and the National Institute for Materials Science in Tsukuba, Japan, have discovered that electrons in twisted trilayer graphene behave unlike those described by Bardeen-Cooper-Schrieffer theory of paired electrons. However, twisted trilayer graphene shares properties with high-temperature cuprates, in which electrons also pair up, but differently from traditional superconductors. Many previous studies in graphene are limited in describing superconductivity, because those experiments focus on the properties of single electrons rather than electron pairs, says Pavel Volkov, one of the researchers involved in this study. “What matters is that electrons form pairs, and somehow you want to probe the properties of those pairs to be able to study superconductivity,” he says.