Category: U.S. Department of Energy

  • Novel flame aerosol system excels at creating nanoparticles

    (Funded by the U.S. Department of Energy)
    Flame aerosol synthesis is used to create nanoparticles that serve as key ingredients in inks and air filters. While effective, this technique has limitations, including challenges with manipulating the flame, achieving precise control over the size and distribution of nanoparticles, and cost. Two new studies, from researchers at the University at Buffalo; the U.S. Department of Energy’s Lawrence Berkeley National Laboratory, Brookhaven National Laboratory, and Lawrence Livermore National Laboratory; and the National Synchrotron Radiation Research Centre in Taiwan have addressed these shortcomings. The studies center on a unique flame aerosol system that is versatile, easy-to-use and cost-effective. In one of the studies, the system was used to create metal-organic frameworks, which are porous nanomaterials; in the other study, the researchers showed that the system could be used to create high-entropy ceramic nanomaterials.

  • Researchers unlock a ‘new synthetic frontier’ for quantum dots

    (Funded by the U.S. Department of Energy, U.S. Department of Defense, and the National Science Foundation)
    Researchers from the University of Chicago; the University of California, Berkeley; Northwestern University; the University of Colorado Boulder; and the U.S. Department of Energy’s Argonne National Laboratory have developed a new technique for growing quantum dots – nanocrystals used in lasers, quantum light-emitting diode (QLED) televisions, and solar cells. The researchers replaced organic solvents typically used to create quantum dots with molten salt – literally superheated sodium chloride of the type sprinkled on baked potatoes. “Sodium chloride is not a liquid in your mind, but assume you heat it to such a crazy temperature that it becomes a liquid … [N]obody ever considered these liquids as media” for the synthesis of quantum dots, said Dmitri Talapin, one of the scientists involved in this study.

  • Kory Burns Leads AI-enhanced Breakthrough that Illuminates Materials

    (Funded by the U.S. Department of Energy)
    Researchers from the University of Virginia, the University of California-Berkeley, the University of Florida, the University of Tennessee-Knoxville, the University of Michigan, and the U.S. Department of Energy’s Sandia National Laboratories and Center for Integrated Nanotechnologies have developed an innovative technique to better determine the nanoscale effects of radiation on materials. Using advanced time-series imaging techniques with a transmission electron microscope, the team compiled more than 1,000 images capturing more than 250,000 defects formed during ion irradiation. The study revealed that defects in copper and gold exhibit different behaviors compared to those in palladium. This distinction underscores the need for specialized analytical models to accurately study these materials under radiation.

  • Specially designed transistors allow researchers to ‘hear’ defects in a promising nanomaterial

    (Funded by the National Science Foundation and the U.S. Department of Energy)
    Researchers from New York University, the U.S. Department of Energy’s Brookhaven National Laboratory, the Korea Advanced Institute of Science and Technology, and the National Institute for Materials Science in Tsukuba, Japan, have pioneered a new technique to identify and characterize atomic-scale defects in a two-dimensional (2D) material called hexagonal boron nitride. The team was able to detect the presence of individual carbon atoms replacing boron atoms in this material. “In this project, we essentially created a stethoscope for 2D materials,” said Davood Shahrjerdi, one of the researchers involved in this study. “By analyzing the tiny and rhythmic fluctuations in electrical current, we can ‘perceive’ the behavior of single atomic defects.”

  • Researchers succeed in taking 3D X-ray images of a skyrmion

    (Funded by the U.S. Department of Energy)
    A difficult-to-describe nanoscale object called a magnetic skyrmion – which can be thought of as spinning circles of magnetism – might one day yield new microelectronic devices that can do more while consuming less power. Researchers from the Department of Energy’s (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab), Paul Scherrer Institute in Villigen, Switzerland, and Western Digital Corporation (San Jose, CA) have now made three-dimensional (3D) X-ray images of magnetic skyrmions. “Our results provide a foundation for nanoscale metrology for spintronics devices,” said Peter Fischer, the scientist who led this study. The research was conducted in part at the Molecular Foundry, a DOE Office of Science user facility at Berkeley Lab.