Category: U.S. Department of Energy
-
Articulating the Breakdown of Continuum Descriptions of Nanoconfined Fluid Flows
(Funded by the U.S. Department of Energy)
Researchers established a theoretical analysis to define two regions, one where nanoscale interfacial dynamics are critical and another where the flow is accurately modeled by standard continuum theory. By demonstrating the important role of chemistry and molecular-scale interactions on confined fluid flows, the results can help guide future studies on when to apply different modeling approaches. These findings can help enhance the effectiveness of molecular-based simulations for investigating complex confined systems in nanofluidics, biology, and colloidal science, offering a complementary molecular-scale perspective to traditional continuum approaches. -
Nanoparticle Blueprints Reveal Path to Smarter Medicines
(Funded by the U.S. National Science Foundation and the U.S. Department of Energy)
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, like a fleet of trucks built from the same design. Researchers have characterized the shape and structure of LNPs in unprecedented detail, revealing that the particles come in a surprising variety of configurations. That variety isn’t just cosmetic: As the researchers found, a particle’s internal shape and structure correlates with how well it delivers therapeutic cargo to a particular destination. -
Carbon nanotube ‘smart windows’ offer energy savings
(Funded by the U.S. Department of Energy)
Researchers at the U.S. Department of Energy’s Lawrence Livermore National Laboratory have developed a new type of electrically controlled, near-infrared smart window that can cut near-infrared light transmission by almost 50%. In these smart windows, carbon nanotubes are grown so they stand upright on the glass, like a microscopic forest. Depending on the voltage applied, the nanotubes can either absorb infrared light and block heat from the sun or let the infrared light through. Once the carbon nanotubes are put into either a blocking or transparent state, they retain charge well, and so, a continuous voltage is not needed to maintain that state. This property offers very low-power operation, a necessity to drive energy savings for the end user. -
Understanding randomness: Argonne researchers visualize decision-making in nanomagnetic structures
(Funded by the U.S. Department of Energy)
Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have unveiled a novel approach to understanding stochasticity in tiny magnetic structures. Their work explores the intricate decision-making processes of nanomagnetic Galton boards, a modern take on a classical concept in statistics and computing. Their insights have the potential to transform computing architectures, leading to more sophisticated neural networks and enhancing encryption technologies to secure data against cyber threats. A Galton board uses a triangular array of pegs. As balls fall through the grid, they randomly bounce left or right, eventually landing somewhere along the bottom. In a nanomagnetic version of the Galton board instead of pegs, the boards use tiny magnetic structures made from a nickel-iron alloy. Instead of balls, they use domain walls, which are boundaries that separate regions with different magnetic orientations within a material. Nanostructures in this work were fabricated at the Center for Nanoscale Materials, a DOE Office of Science user facility at Argonne. -
Depositing dots on corrugated chips improves photodetector capabilities
(Funded by the U.S. Department of Energy)
Researchers at the U.S. Department of Energy’s Lawrence Livermore National Laboratory have developed a new method to deposit quantum-dot films on corrugated surfaces. The researchers used electrophoretic deposition, which drives the quantum dots through a solution with an electric field toward an electrode with the opposite charge. When they reach that electrode, the quantum dots assemble into a film. Traditionally, quantum dots are made with long organic ligands – molecules that bind to the dots and stabilize them in solution. But after the quantum dots are deposited as a film, those long ligands act as insulators and limit device performance, so they are removed with post-processing. In this study, the researchers made quantum dot films using short ligands, which are more conductive and negate the need for post-processing.
