Category: NNI-NEWS

  • Novel point-of-care technology delivers accurate HIV results in minutes

    (Funded by the National Institutes of Health)
    Researchers from Northwestern University and the University of California, San Diego, have developed new technology that could lead to the creation of a rapid point-of-care test for HIV infection. The technology uses a nanomechanical platform and tiny cantilevers to detect multiple HIV antigens at high sensitivity in a matter of minutes. Built into a solar-powered device, this technology could be taken to hard-to-reach parts of the world, where early detection remains a challenge to deliver fast interventions to vulnerable populations without waiting for lab results.

  • Nanoscale ripples provide key to unlocking thin material properties in electronics

    (Funded by the U.S. National Science Foundation and the U.S. Department of Energy)
    When materials are created on a nanometer scale, even the thermal energy present at room temperature can cause structural ripples. How these ripples affect the mechanical properties of these thin materials can limit their use in electronics and other key systems. Now, using a semiconductor manufacturing process, researchers from Binghamton University, Harvard University, Princeton University, Penn State, and the U.S. Department of Energy’s Argonne National Laboratory have created alumina structures that are 28 nanometers thick on a silicon wafer with thermal-like static ripples, and then tested these ripples with lasers to measure their behavior. The results match with theories proposed about such structural ripples.

  • Scientists merge two “impossible” materials into new artificial structure

    (Funded by the U.S. Department of Energy)
    An international team led by Rutgers University-New Brunswick researchers has merged two lab-synthesized two-dimensional materials into a synthetic quantum structure once thought impossible to exist and produced an exotic structure expected to provide insights that could lead to new materials at the core of quantum computing. One slice of the quantum structure is made of dysprosium titanate, an inorganic compound used in nuclear reactors, while the other is composed of pyrochlore iridate, a new magnetic semimetal. The specific electronic and magnetic properties of the material developed by the researchers can help in creating very unusual yet stable quantum states, which are essential for quantum computing.

  • Metasurfaces: Bilayer device can control many forms of polarized light

    (Funded by the U.S. National Science Foundation and the U.S. Department of Defense)
    Engineers at Harvard University have created a bilayer metasurface made of two stacked layers of titanium dioxide nanostructures. Almost a decade ago, the engineers had unveiled the world’s first visible-spectrum metasurfaces – ultra-thin, flat devices patterned with nanostructures that could precisely control the behavior of light and enable applications in imaging systems, augmented reality, and communications. But the single-layer nanostructure design has been in some ways limiting. For example, previous metasurfaces put specific requirements on the manipulation of light’s polarization in order to control the light’s behavior. Using the facilities of the Center for Nanoscale Systems at Harvard, the engineers came up with a fabrication process for freestanding, sturdy structures of two metasurfaces that hold strongly together but do not affect each other chemically.

  • Remediation technique turns PFAS waste into graphene

    (Funded by the U.S. Department of Defense)
    Rice University researchers have developed an innovative solution to a pressing environmental challenge: removing and destroying per- and polyfluoroalkyl substances (PFAS), commonly called “forever chemicals.” By combining granular activated carbon saturated with PFAS and mineralizing agents like sodium or calcium salts, the researchers applied a high voltage to generate temperatures exceeding 3,000 degrees Celsius in under one second. The intense heat breaks down the strong carbon-fluorine bonds in PFAS, converting them into inert, nontoxic fluoride salts. Simultaneously, the granular activated carbon is upcycled into graphene, a valuable material used in industries ranging from electronics to construction.