Category: NNI-NEWS
-
Worldβs first micromachine twists 2D materials at will
(Funded by the U.S. Department of Defense and the National Science Foundation)
Just a few years ago, researchers discovered that changing the angle between two layers of graphene, an atom-thick sheet of carbon, also changed the material’s electronic and optical properties. To study the physics underlying this phenomenon, researchers usually produce tens to hundreds of different configurations of the twisted graphene structures β a costly and labor-intensive process. Now, researchers from the Massachusetts Institute of Technology, Harvard University, Stanford University, the University of California, Berkeley, and the National Institute for Materials Science in Tsukuba, Japan, have created a device that can twist a single structure in countless ways. In other words, the researchers demonstrated the world’s first micromachine that can twist two-dimensional (2D) materials at will. -
UVA Engineers Design Lookalike Drug Nanocarrier to Treat Lung Diseases
(Funded by the National Institutes of Health and the National Science Foundation)
Engineers at the University of Virginia have created a drug nanocarrier designed to cure chronic or deadly respiratory diseases by slipping past the lungs’ natural defenses. The engineers successfully demonstrated the nanocarrier’s effectiveness using a device that captures the geometric and biological features of human airways. “We think this innovation not only promises better treatments of lung diseases with reduced side effects, but also opens possibilities for treating conditions affecting mucosal surfaces throughout the body,” said Liheng Cai, one of the engineers involved in this study. -
Morphable materials: Researchers coax nanoparticles to reconfigure themselves
(Funded by the National Science Foundation)
Researchers from the University of Michigan and Indiana University have shown that by combining an electron microscope, a small sample holder with microscopic channels, and computer simulations, it is possible to see how nanoscale building blocks can rearrange into different organized structures. In the study, the researchers suspended nanoparticles in tiny channels of liquid on a microfluidic flow cell. The researchers learned that the instrument gave the nanoparticles β which normally are attracted to each other β just enough electrostatic repulsion to push them apart and allow them to assemble into ordered arrangements. -
Heman Bekele is Time’s 2024 Kid of the Year
This article features Heman Bekele, a high school student who was named βKid of the Year 2024β by TIME magazine. Bekele is working on a soap that that could one day treat, and even prevent, multiple forms of skin cancer. His idea is to combine the soap with a lipid-based nanoparticle that would linger on the skin when the soap is washed away. The article is accompanied by a short video interview with Bekele.
-
URI-led study holds promise for advancing modular quantum information processing
(Funded by the U.S. Department of Defense)
Researchers from the University of Maryland, the University of Maryland, the University of California, Los Angeles, and the National Institute of Standards and Technology have envisioned a modular system for scaling quantum processors with a flexible way of linking qubits over long distances. While there are many types of qubits, the researchers chose to study quantum dot-based spin qubits that interact through microwave photons in a superconducting cavity. (Quantum dots are semiconductor nanoparticles that have unique size- and shape-dependent optoelectronic properties.) The researchers provided comprehensive guidelines for tailored long-distance entangling links by making multiple frequencies available for each qubit to become linked with microwave cavity photons of a given frequency.
