Category: NNI-NEWS

  • Manganese cathodes could boost lithium-ion batteries

    (Funded by the U.S. Department of Energy)
    Supplies of nickel and cobalt, which are commonly used in the cathodes of lithium-ion batteries, are limited. Now, new research led by researchers from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory opens up a potential low-cost, safe alternative in manganese, the fifth most abundant metal in the Earth’s crust. The researchers showed that manganese can be effectively used in emerging cathode materials called disordered rock salts. They used state-of-the-art electron microscopes to capture atomic-scale pictures of the manganese-based material in action and found that it formed a nanoscale semi-ordered structure that enhanced the battery performance.

  • Water-free manufacturing approach could help advance 2D electronics integration

    (Funded by the National Institute of Standards and Technology and the National Science Foundation)
    Researchers from Penn State, Purdue University, Intel Corporation (Santa Clara, CA), The Kurt J. Lesker Company (Jefferson Hills, PA), and National Yang Ming Chiao Tung University in Taiwan have developed a process to produce a “rust-resistant” coating with additional properties ideal for creating faster, more durable electronics. Traditional methods to protect two-dimensional (2D) semiconductor materials from rusting involve oxide-based coatings, but these processes often use water, which can accelerate the oxidation they aim to prevent. The team’s approach was to use amorphous boron nitride as a coating material, which was evenly coated on the 2D materials by using a new two-step atomic layer deposition method.

  • Recharging mitochondria – nanoflowers offer a new way to simulate energy production to improve aging ailments

    (Funded by the National Institutes of Health and the National Science Foundation)
    Researchers from Texas A&M University have developed molybdenum disulfide nanoflowers that can stimulate mitochondrial regeneration, helping cells generate more energy. According to Akhilesh Gaharwar, one of the researchers involved in this study, the nanoflowers could offer new treatments for muscle dystrophy, diabetes, and neurodegenerative disorders by increasing ATP production, mitochondrial DNA, and cellular respiration. “This discovery is unique,” said Vishal Gohil, another researcher involved in the study. “We are not just improving mitochondrial function; we are rethinking cellular energy entirely. The potential for regenerative medicine is incredibly exciting.”

  • Ventilator-on-a-chip compares injury caused by mechanical ventilation

    (Funded by the National Institutes of Health and the U.S. Department of Defense)
    Using a ventilator-on-a-chip developed at The Ohio State University, researchers have found that shear stress from the collapse and reopening of the air sacs is the most harmful type of damage. This miniature organ-on-a-chip model simulates lung injury during mechanical ventilation, said Samir Ghadiali, one of the scientists involved in this study. The ventilator-on-a chip’s measurement of real-time changes to cells was enabled by an innovative approach: growing human lung cells on a synthetic nanofiber membrane mimicking the complex lung matrix. This ventilator-on-a-chip is closer to the authentic ventilated lung microenvironment than any similar lung chip systems to date, the researchers said.

  • Harnessing exosomes and hydrogels for advanced diabetic wound healing

    (Funded by the U.S. Department of Energy and the National Science Foundation)
    Researchers from New York University have begun to explore exosomes, tiny membrane-bound vesicles, as promising tools for wound healing. These nanovesicles carry various biological materials – nucleic acids, proteins, and lipids – allowing them to mediate intercellular communication and influence processes such as tissue repair. By combining them with hydrogels, which are composed of networks of cross-linked polymers, the researchers showed that hydrogel-exosome combinations consistently lead to faster wound closure than either hydrogels or exosomes used alone.