Category: NNI-NEWS
-
Researchers create orientation-independent magnetic field-sensing nanotube spin qubits
(Funded by the National Science Foundation)
Purdue University researchers have developed patent-pending one-dimensional boron nitride nanotubes containing spin qubits, or spin defects. These nanotubes are more sensitive in detecting off-axis magnetic fields at high resolution than traditional diamond tips used in scanning probe magnetic-field microscopes. Applications include quantum-sensing technology that measures changes in magnetic fields and collects and analyzes data at the atomic level. -
Nanopillars create tiny openings in the nucleus without damaging cells
(Funded by the U.S. Department of Defense, the National Science Foundation and the National Institutes of Health)
Researchers from the University of California San Diego have created an array of nanopillars that can breach the nucleus of a cell – the compartment that houses our DNA – without damaging the cell’s outer membrane. This new “gateway into the nucleus” could open new possibilities in gene therapy, where genetic material needs to be delivered directly into the nucleus, as well as drug delivery and other forms of precision medicine. The nucleus is impenetrable by design. Its membrane is a highly fortified barrier that shields our genetic code, letting in only specific molecules through tightly controlled channels. -
Beyond ‘one pore at a time’: New method of generating multiple, tunable nanopores
(Funded by the U.S. Department of Energy and the National Science Foundation)
Nanoporous membranes with holes smaller than one-billionth of a meter have powerful potential for decontaminating polluted water or for osmotic power generators. But these applications have been limited in part by the tedious process of tunneling individual sub-nanometer pores one by one. Now, researchers from the University of Chicago have found a novel path around this long-standing problem. They created a new method of pore generation that builds materials with intentional weak spots and then applies a remote electric field to generate multiple nanoscale pores all at once. -
Watch water form out of thin air
(Funded by the U.S. Department of Energy and the U.S. Department Defense)
For the first time ever, researchers have witnessed – in real time and at the molecular-scale – hydrogen and oxygen atoms merge to form tiny, nano-sized bubbles of water. The event occurred as part of a new Northwestern University study, during which scientists sought to understand how palladium, a rare metallic element, catalyzes the gaseous reaction to generate water. “Think of Matt Damon’s character, Mark Watney, in the movie ‘The Martian’,” said Northwestern’s Vinayak Dravid, senior author of the study. “He burned rocket fuel to extract hydrogen and then added oxygen from his oxygenator. Our process is analogous, except we bypass the need for fire and other extreme conditions. We simply mixed palladium and gases together.” Dravid is the founding director of the Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, where the study was conducted. -
Siloxane nanoparticles unlock precise organ targeting for mRNA therapy
(Funded by the National Institutes of Health and the National Science Foundation)
Researchers from the University of Pennsylvania, Temple University in Philadelphia, the University of Delaware, and the University of Electronic Science and Technology of China have discovered a novel means of directing lipid nanoparticles to target specific tissues. The engineers demonstrated how subtle adjustments to the chemical structure of an ionizable lipid, a key component of a lipid nanoparticle, allow for tissue-specific delivery to the liver, lungs, and spleen. The researchers’ key insight was to incorporate siloxane composites – a class of silicon- and oxygen-based compounds already used in medical devices, cosmetics and drug delivery – into ionizable lipids.