Category: NNI-NEWS
-
W&M researchers progress in unraveling mysteries of invisible spider web ‘super fibers’
(Funded by the National Science Foundation)
Researchers at William & Mary have measured the strength and stretchability of minuscule nanofibrils present in the silk spun by the southern house spider. The core of a spider silk strand is composed of two distinct warps that form helical loops around a central foundation fiber. The tiniest fibers, nanofibrils, are spun into a mesh that surrounds those supporting structures. The researchers found that the nanofibrils in the southern house spider’s silk could stretch 11 times their original length, more than twice the amount of any spider silk previously tested. “As amazing as spider silk as a whole is, looking at these tiny fibrils, they are even stretchier,” said Hannes Schniepp, one of the scientists involved in this study. -
Off the clothesline, on the grid: MXene nanomaterials enable wireless charging in textiles
(Funded by the National Institutes of Health)
Researchers from Drexel University, the University of Pennsylvania, and Accenture Labs (San Francisco, CA), and Corporal Michael J. Crescenz Veterans Affairs Medical Center (Philadelphia, PA) have built a textile energy grid that can be wirelessly charged. The grid was printed on nonwoven cotton textiles with an ink composed of MXene, a type of nanomaterial that is both conductive and durable enough to withstand the folding, stretching, and washing that clothing endures. The proof-of-concept represents an important development for wearable technology, which, at present, requires complicated wiring and is limited by the use of rigid, bulky batteries that are not fully integrated into garments. -
Farewell frost! New surface prevents frost without heat
(Funded by the National Science Foundation)
Researchers from Northwestern University and the University of California, Los Angeles, have developed a new strategy that prevents frost formation before it begins. The researchers discovered that tweaking the texture of any surface and adding a thin layer of graphene oxide prevents frost from forming on the surface for one week, or potentially even longer. This is 1,000 times longer than current, state-of-the-art anti-frosting surfaces. As an added bonus, the new scalable surface design also is resistant to cracks, scratches, and contamination. -
Potential of MXenes for nanotech applications
(Funded by the National Science Foundation)
Researchers from the University of Nebraska-Lincoln and South Dakota School of Mines and Technology are exploring the physical properties of two-dimensional materials called MXenes. Previous research by the Nebraska team on other MXene materials revealed their n-type (electron-rich) character and decreased conductivity in response to light. In contrast, the new material is the first MXene with demonstrated p-type (electron-deficient) property and increasing conductivity under illumination. “Previously studied MXenes were all n-type, but now we demonstrate the first p-type MXene,” said Alexander Sinitskii, the scientist who led this study. “This should enable complex structures where complementary MXenes are used together to achieve new electronic functionalities.”The researchers performed experiments at the Nebraska Center for Materials and Nanoscience, a user facility that is part of the National Science Foundation-funded National Nanotechnology Coordinated Infrastructure. -
Implantable microparticles can deliver two cancer therapies at once
(Funded by the National Institutes of Health)
Researchers at the Massachusetts Institute of Technology have designed tiny particles that can be implanted at a tumor site, where they deliver two types of therapy: heat and chemotherapy. In a study of mice, the researchers showed that this therapy completely eliminated tumors in most of the animals and significantly prolonged their survival. To create a microparticle that could deliver both of these treatments, the researchers combined an inorganic material called molybdenum disulfide nanosheets with one of two drugs: doxorubicin or violacein. To make the particles, molybdenum disulfide and the drug are mixed with a polymer called polycaprolactone and then dried into a film that can be pressed into microparticles of different shapes and sizes. Once injected into a tumor site, the particles remain there throughout the treatment, and an external near-infrared laser is used to heat up the particles.
