Category: NNI-NEWS

  • Tumor cells suffer copper withdrawal

    (Funded by the National Institutes of Health)
    Copper plays a key role in the growth and development of cells. Because cancer cells grow and multiply more rapidly than non-cancer cells, they have a significantly higher need for copper ions. Restricting their access to copper ions could be a new therapeutic approach. The problem is that it has, so far, not been possible to develop a system that binds copper ions with sufficient affinity to “take them away” from copper-binding biomolecules. Now, researchers from Stanford University School of Medicine and the Max Planck Institute for Polymer Research in Mainz, Germany, have successfully developed such a system, which ensures that individual peptide molecules aggregate into nanofibers once they are inside the tumor cells. In this form, the nanofiber surfaces have many copper-binding sites in the right spatial orientation to be able to grasp copper ions.

  • Sugar-like nanoparticle covering could boost cancer drug delivery

    (Funded by the National Institutes of Health, the National Science Foundation, the U.S. Department of Energy, and the U.S. Department of Defense)
    Researchers from the University of Mississippi have shown that using glycopolymers – polymers made with natural sugars like glucose – to coat nanoparticles that deliver cancer-fighting medication directly to tumors reduces the body’s immune response to cancer treatment. The researchers tested glycopolymer-coated nanoparticle treatments in mice with breast cancer and found that more nanoparticles reached the tumors in the glycopolymer treatment compared to more conventional treatment that uses polyethylene glycol-based nanoparticles. “Our findings highlight that the nanoparticles we’re using significantly reduce unwanted immune responses while dramatically enhancing drug delivery, both in cell and animal models,” said Kenneth Hulugalla, one of the scientists involved in this study.

  • Nanoink and printing technologies could enable electronic repairs, production in space

    (Funded by the National Aeronautics and Space Administration)
    During a NASA microgravity flight, researchers from Iowa State University and the University of Wisconsin-Madison have tested how a printer would work in the zero gravity of space. The ink used in this printer featured silver nanoparticles made with biobased polymers. The printer uses a 3D printing process that jets ink under an electric field, which could eliminate the need for gravity to help deposit ink. If the technology used in this printer works in zero gravity, astronauts could use such a printer to make electric circuits for spacecraft or equipment repairs or to manufacture high-value electronic components.

  • New ion speed record holds potential for faster battery charging, biosensing

    (Funded by the National Science Foundation and the U.S. Department of Energy)
    Scientists from Washington State University and the U.S. Department of Energy’s Lawrence Berkeley National Laboratory have discovered a way to make ions move more than ten times faster in mixed organic ion-electronic conductors. These conductors combine the advantages of the ion signaling used by many biological systems with the electron signaling used by computers. The new development speeds up ion movement in these conductors by using molecules that attract and concentrate ions into a separate nanochannel creating a type of tiny “ion superhighway.” These types of conductors hold a lot of potential because they allow movement of both ions and electrons at once, which is critical for battery charging and energy storage.

  • Electrochemistry unlocks a new type of palladium hydride nanoparticle

    (Funded by the National Science Foundation)
    Researchers from the University of Illinois at Urbana-Champaign have discovered a new type of nanoparticle, palladium hydride, which contains palladium and hydrogen. Palladium hydride nanoparticles are typically structured symmetrically, looking like a cube with palladium atoms posted at each corner and centered on all six cubic faces. In contrast, the new nanoparticle’s structure is presumably the least symmetrical of all crystal systems. To create this unusual nanoparticle, the researchers added electrons to a solution containing palladium ions and water, and the electrons’ negative charge pulled positive hydrogen ions from the water molecules, allowing the hydrogen ions to bond with the palladium ions.