Category: NNI-NEWS
-
New imaging platform advances 3D visualization of cellular structures at the nanoscale
(Funded by the National Institutes of Health)
Researchers at Rice University have developed an innovative imaging platform that promises to improve our understanding of cellular structures at the nanoscale. This platform offers significant advancements in super-resolution microscopy, enabling fast and precise three-dimensional (3D) imaging of multiple cellular structures. By integrating an angled light sheet, a nanoprinted microfluidic system, and advanced computational tools, the platform significantly improves imaging precision and speed, allowing for clearer visualization of how different cellular structures interact at the nanoscale. -
From Days to Hours: A Faster Way to Make a Promising New Catalyst
(Funded by the U.S. Department of Energy)
Scientists from Clark Atlanta University and the Molecular Foundry at the U.S. Department of Energyโs Lawrence Berkeley National Laboratory have discovered a faster, more sustainable method for making metal-encapsulated covalent organic frameworks โ materials that have the potential to play a crucial role in catalysis, energy storage, and chemical sensing. The new one-step, room-temperature process eliminates the need for toxic solvents and significantly reduces the production time from several days to just one hour. The covalent organic frameworks were evaluated to see how porous and crystalline they are and how much metal was added to the structure. Also, powerful transmission electron microscopes were used to visualize the covalent organic framework structure and the distribution of metal throughout. -
Newly designed nanocrystals can kill bacteria under visible light
(Funded by the National Science Foundation)
Rice University scientists have developed halide perovskite nanocrystals that have shown potential as antimicrobial agents that are stable, effective, and easy to produce. The scientists developed a method that coated the halide perovskite nanocrystals in two layers of silicon dioxide. Next, they tested the antimicrobial properties and durability of the double-coated halide perovskite nanocrystals and showed that under relatively low levels of visible light, the halide perovskite nanocrystals destroyed more than 90% of E. coli bacteria in a solution after six hours. -
Engineers refine lipid nanoparticles for better mRNA therapies
(Funded by the National Institutes of Health)
Nanoparticles have transformed how mRNA vaccines and therapeutics are delivered by allowing them to travel safely through the body, reach target cells and release their contents efficiently. At the heart of these nanoparticles are ionizable lipids, special molecules that can switch between charged and neutral states depending on their surroundings. Now, researchers at the University of Pennsylvania have used an iterative process to find the ideal structure for the ionizable lipid. By borrowing the idea of directed evolution, a technique used in both chemistry and biology that mimics the process of natural selection, the researchers combined precision with rapid output to achieve their ideal โionizable lipid recipe.” -
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
(Funded by the National Science Foundation)
Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic systems, which convert heat into electricity via light. Using an unconventional approach inspired by quantum physics, the researchers designed a thermal emitter that can deliver high efficiencies within practical design parameters. The emitter is composed of a tungsten metal sheet, a thin layer of a spacer material and a network of silicon nanocylinders. The research could inform the development of thermal-energy electrical storage, which holds promise as an affordable, grid-scale alternative to batteries.
