Category: NNI-NEWS

  • SMU graduate student makes breakthrough in biosensing technology

    (Funded by the U.S. Department of Energy, the U.S. National Science Foundation, and the National Institutes of Health)
    Researchers at Southern Methodist University, the University of Texas at Arlington, the U.S. Department of Energy’s Brookhaven National Laboratory, and the Korea Institute of Science and Technology in Seoul have discovered a way to enhance the sensitivity of nanopores for early detection of diseases. They integrated octahedral DNA origami structures with solid-state nanopores to significantly improve the detection of proteins, especially those that are present in low concentrations. Nanopores are tiny holes that can detect individual molecules as they pass through. The researchers determined that combining the precision of DNA origami with the robustness of solid-state nanopores could create a “hybrid nanopore” system, enabling more precise analysis.

  • Nanoscale bumps and grooves trigger big changes in cell behavior

    (Funded by the National Science Foundation, the U.S. Department of Defense, and the National Institutes of Health)
    Researchers at the University of California San Diego have developed a platform for studying how nanoscale growing surfaces can impact cellular behavior. While previous studies have shown how surface structures can change cellular shape, little is known about their specific effects on cell metabolism. The research team found that cells grown on engineered nanopillar surfaces show dramatically different metabolic profiles than cells not grown on such surfaces. Also, the researchers found that growing cells on different engineered nanopillar surfaces could change how cells produce and modify lipids, the primary components of cell membranes.

  • Researchers demonstrate self-assembling electronics

    (Funded by the National Science Foundation)
    Researchers from North Carolina State University and Iowa State University have demonstrated a new technique for self-assembling electronic devices. The proof-of-concept work was used to create nanoscale and microscale diodes and transistors, and paves the way for self-assembling more complex electronic devices without relying on existing computer chip manufacturing techniques. The self-assembling technique follows a multistep process that makes use of liquid metal particles and a solution that contains molecules called ligands that are made up of carbon and oxygen. At some point during this process, the metal ions interact with the oxygen to form semiconductor metal oxides, while the carbon atoms form graphene sheets. These ingredients assemble themselves into a well-ordered structure consisting of semiconductor metal oxide molecules wrapped in graphene sheets.

  • Physics experiment proves patterns in chaos in peculiar quantum realm

    (Funded by the U.S. Department of Defense and the National Science Foundation)
    Scientists from the University of California, Berkeley; the University of California, Santa Cruz; Harvard University; the University of Manchester in the United Kingdom; and the National Institute for Materials Science in Tsukuba, Japan, have conducted an experiment that confirms a theory first put forth 40 years ago stating that electrons confined in quantum space would move along common paths rather than producing a chaotic jumble of trajectories. To conduct this experiment, the scientists combined advanced imaging techniques and precise control over electron behavior within graphene, a two-dimensional material made of carbon atoms. The scientists used the finely tipped probe of a scanning tunneling microscope to first create a trap for electrons and then hover close to a graphene surface to detect electron movements without physically disturbing them.

  • Advanced SAXS-MD framework reveals RNA nanoparticle dynamics in solution

    (Funded by the U.S. Department of Energy, the National Institutes of Health, and the National Science Foundation)
    Researchers from the University of North Carolina Charlotte and the U.S. Department of Energy’s Brookhaven National Laboratory have developed an innovative computational framework for modeling multifunctional RNA nucleic acid nanoparticles. By integrating small and wide-angle x-ray scattering data with data-driven molecular dynamics simulations, the researchers developed a methodology for studying multistranded RNA nucleic acid nanoparticles in their solution-state environments. Small-angle x-ray scattering–Molecular Dynamics (SAXS–MD) guides simulations toward biologically meaningful conformations, addressing the limitations of traditional unconstrained molecular dynamics simulations.