Category: NNI-NEWS

  • New 2D carbon material is tougher than graphene and resists cracking

    (Funded by the U.S. Department of Energy)
    Researchers from Rice University; the Massachusetts Institute of Technology; Carnegie Mellon University; the National University of Singapore; Southern University of Science and Technology in Shenzhen, China; and Osaka University in Japan have found a two-dimensional (2D) carbon material that is tougher than graphene and resists cracking. Carbon-derived materials, such as graphene, are among the strongest on Earth, but once established, cracks propagate rapidly through them, making them prone to sudden fracture. The new carbon material, called a monolayer amorphous carbon, is both strong and tough. Like graphene, this material is also a 2D material, but unlike graphene, in which atoms are arranged in an ordered lattice, this material incorporates both crystalline and amorphous regions. “This unique design prevents cracks from propagating easily, allowing the material to absorb more energy before breaking,” said Bongki Shin, one of the researchers involved in this study.

  • Light-Powered Breakthrough Enables Precision Tuning of Quantum Dots

    (Funded by the U.S. National Science Foundation)
    Researchers at North Carolina State University have demonstrated a new technique that uses light to tune the optical properties of quantum dots. The researchers placed green-emitting perovskite quantum dots in a solution containing either chlorine or iodine. The solution was then run through a microfluidic system that incorporated a light source. The microfluidic environment enabled precise reaction control by ensuring uniform light exposure across small solution volumes, approximately 10 microliters per reaction droplet. The light triggered reactions that made the green-emitting perovskite quantum dots move closer to the blue end of the spectrum when chlorine was present in the solvent and closer to the red end of the spectrum when iodine was present in the solvent.

  • Metastable marvel: X-rays illuminate an exotic material transformation

    (Funded by the U.S. Department of Energy)
    Scientists from the U.S. Department of Energy’s (DOE) Argonne National Laboratory, SLAC National Accelerator Laboratory, and Lawrence Berkeley National Laboratory; the University of California, Berkeley; Pennsylvania State University; Stanford University; Rice University; the Indian Institute of Science in Bangalore, India; the Japan Synchrotron Radiation Research Institute in Sayo, Japan; RIKEN SPring-8 Center in Sayo, Japan; and the University of Tokyo in Japan are investigating a material with a highly unusual structure – one that changes dramatically when exposed to an ultrafast pulse of light from a laser. At the Center for Nanoscale Materials, a DOE Office of Science user facility at Argonne, the scientists used a technique called transient absorption spectroscopy to detect photocarrier activity within the material. This approach helped them determine how much charge gets released and how quickly the charge decays.

  • Air inside your home may be more polluted than outside due to everyday chemical products

    (Funded by the U.S. National Science Foundation)
    Engineers from Purdue University and GRIMM Aerosol Technik Ainring GmbH & Co. in Germany have found that chemical products from air fresheners, wax melts, floor cleaners, and deodorants can rapidly fill the air with nanoparticles that are small enough to get deep into our lungs. These nanoparticles form when fragrances interact with ozone, which enters buildings through ventilation systems. “Our research shows that fragranced products are not just passive sources of pleasant scents—they actively alter indoor air chemistry, leading to the formation of nanoparticles at concentrations that could have significant health implications,” said Nusrat Jung, one of the engineers involved in this study.

  • A New Approach to Efficient Optoelectronics, Inspired by the Human Eye

    (Funded by the U.S. Department of Energy)
    Most optical sensors record data from light and then transmit all of the raw data to a computer for processing. This typically consumes more energy than necessary, because in most applications, only a small amount of information relative to the raw data is needed. So, scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory and Sandia National Laboratories; the University of California, Berkeley; the University of California, Davis; and the University of Texas at Arlington are developing a less power-hungry approach, in which some data processing is conducted in the sensor itself, before the data is sent to a computer or processed by edge computing devices. The new sensor, called a “nanoscale hybrid,” stitches together nanostructures, such as nanotubes and nanowires. It is highly sensitive in part because the sensor’s nanoscale components are smaller than the wavelength of light.