Category: U.S. National Science Foundation
-
Low-noise transducers can bridge the gap between microwave and optical qubits
(Funded by the U.S. Department of Defense, the U.S. Department of Energy and the U.S. National Science Foundation)
Researchers at Caltech have developed an on-chip transducer that converts microwave photons to optical photons. The device involves a tiny silicon beam that vibrates at 5 gigahertz and couples to a microwave resonator – essentially a nanoscale box in which photons bounce around, also at 5 GHz. Using a technique called electrostatic actuation, a microwave photon is converted within that box to a mechanical vibration of the beam, and that mechanical oscillation, with the help of laser light, gets converted by the resonator into an optical photon. Such a conversion could enable the construction of large-scale distributed superconducting quantum computers. -
Scientists tune in to rhombohedral graphene’s potential
(Funded by the U.S. National Science Foundation)
Researchers from the University of Texas at Dallas, the Massachusetts Institute of Technology, and international collaborators have found that rhombohedral graphene behaves similarly to semiconductors and exhibits novel magnetism and superconductivity, as well as the quantum anomalous Hall effect, at extremely low temperatures. Graphene – a single layer of carbon atoms arranged in a flat honeycomb pattern – can be stacked in two different ways: Hexagonal stacking occurs when even-numbered graphene layers are aligned (with the odd-numbered layers rotated 60 degrees relative to the even layers); in contrast, rhombohedral stacking features a unidirectional 60-degree rotation for each successive layer. -
Tellurium boosts 2D semiconductor performance for faster photodetection
(Funded by the National Institutes of Health and the U.S. National Science Foundation)
Researchers from Carnegie Mellon University and the University of Southern California have devised a method to create large amounts of a material that can be used to make two-dimensional (2D) semiconductors with record high performance. That material, tellurium, has a fast conducting speed and is stable in the air, so it does not easily degrade. The researchers used 2D tellurium to create an ultralight-weight photodetector – a device that can detect light – which is highly tunable, allowing its parameters to be changed so it can be used in a variety of applications, a property that is not true of other photodetectors. -
Carbon nanotubes and machine learning: A new way to spot subtle immune cell differences
(Funded by the National Institutes of Health and the U.S. National Science Foundation)
Researchers from the University of Rhode Island and Brown University have shown that carbon nanotubes could be combined with machine learning to detect subtle differences between closely related immune cells. The researchers used an in vitro experiment that involved placing live cells into a culture dish, adding carbon nanotubes, and then using a specialized microscope with an infrared camera to observe the emitted light from each cell. The camera generated millions of data points, each of which reflected cellular activity. Healthy cells emitted one type of light, while potentially unhealthy or changing cells emitted different light patterns. -
‘Nanodot’ control could fine-tune light for sharper displays and quantum computing
(Funded by the U.S. National Science Foundation)
Researchers from Penn State, the University of North Texas, the University of Pennsylvania, Université Paris-Saclay in France, and the National Institute for Materials Science in Tsukuba, Japan, have shown that the light emitted from two-dimensional (2D) materials can be modulated by embedding a second 2D material, called a nanodot, inside them. The researchers showed that by controlling the nanodot size, they could change the color and frequency of the emitted light. The control came from adjusting the band gaps of the materials – essentially the energy threshold electrons must cross to make a material emit light.
