Category: U.S. National Science Foundation

  • Molecular nanocages can remove 80–90% of PFAS from water

    (Funded by the U.S. National Science Foundation)
    Researchers from The State University of New York, Buffalo; St. Bonaventure University; and Stony Brook University have created a molecular nanocage that captures the bulk of per- and polyfluoroalkyl substances (PFAS) found in water – and it works better than traditional filtering techniques that use activated carbon. Made of an organic nanoporous material designed to capture only PFAS, this tiny chemical-based filtration system removed 80% of PFAS from sewage and 90% of PFAS groundwater, while showing very low adverse environmental effects. PFAS are chemical compounds sometimes called “forever chemicals” and are commonly used in food packaging and nonstick coatings.

  • This small sensor could make huge impacts on brain injury treatment

    (Funded by the U.S. National Science Foundation)
    Monitoring pressure inside the skull is key to treating traumatic brain injuries and preventing long-lasting complications, but most of the monitoring devices are large and invasive. Now, researchers from Georgia Tech and Louisiana State University, along with international collaborators, have created a nanosensor made from ultra-thin, flexible silicone that can be embedded in a catheter. Once the catheter is in a patient’s skull, the nanosensor can continuously gather data at a more sensitive rate than traditional devices. With this nanosensor, even the smallest pressure changes could alert clinicians that further treatment is needed.

  • ‘Patchy’ thermogels show next-gen biomedical material potential, scientists say

    (Funded by the U.S. Department of Energy and the U.S. National Science Foundation)
    Scientists at Penn State have developed a new design for thermogels – materials that can be injected as a liquid and turn into a solid inside our bodies – that further improves these materials’ properties. The newly designed thermogels are made with nanoparticles that have sticky spots, similar to arms reaching out and giving the nanoparticles places to connect with one another and form a structure. The method may be especially appealing for soft tissue reconstruction, in which case thermogels could serve as structures that provide a framework for cells to stick to and form new, healthy tissue.

  • Nanoscale ripples provide key to unlocking thin material properties in electronics

    (Funded by the U.S. National Science Foundation and the U.S. Department of Energy)
    When materials are created on a nanometer scale, even the thermal energy present at room temperature can cause structural ripples. How these ripples affect the mechanical properties of these thin materials can limit their use in electronics and other key systems. Now, using a semiconductor manufacturing process, researchers from Binghamton University, Harvard University, Princeton University, Penn State, and the U.S. Department of Energy’s Argonne National Laboratory have created alumina structures that are 28 nanometers thick on a silicon wafer with thermal-like static ripples, and then tested these ripples with lasers to measure their behavior. The results match with theories proposed about such structural ripples.

  • Metasurfaces: Bilayer device can control many forms of polarized light

    (Funded by the U.S. National Science Foundation and the U.S. Department of Defense)
    Engineers at Harvard University have created a bilayer metasurface made of two stacked layers of titanium dioxide nanostructures. Almost a decade ago, the engineers had unveiled the world’s first visible-spectrum metasurfaces – ultra-thin, flat devices patterned with nanostructures that could precisely control the behavior of light and enable applications in imaging systems, augmented reality, and communications. But the single-layer nanostructure design has been in some ways limiting. For example, previous metasurfaces put specific requirements on the manipulation of light’s polarization in order to control the light’s behavior. Using the facilities of the Center for Nanoscale Systems at Harvard, the engineers came up with a fabrication process for freestanding, sturdy structures of two metasurfaces that hold strongly together but do not affect each other chemically.