Category: U.S. National Science Foundation

  • New nanoparticles boost immune system in mice to fight melanoma and breast cancer

    (Funded by the National Institutes of Health and the National Science Foundation)
    Researchers from Vanderbilt University, Yale University, Northwestern University, and AstraZeneca have developed a set of nanoparticles that stimulate the immune system in mice to fight cancer and may eventually do the same in humans. The nanoparticles delivered a nucleic acid molecule that triggers an immune response that is normally used by the body to recognize foreign viruses to help the immune system mount a defense, according to the researchers.

  • New technique pinpoints nanoscale ‘hot spots’ in electronics to improve their longevity

    (Funded by the National Science Foundation)
    Researchers from the University of Rochester have outlined a process for mapping heat transfer using luminescent nanoparticles. By applying highly doped upconverting nanoparticles to the surface of a device, the researchers were able to achieve super-high-resolution thermometry at the nanoscale level from up to 10 millimeters away. According to Andrea Pickel , one of the scientists involved in the study, this method could be used by manufacturers to improve a wide array of electrical components.

  • A New Approach to Accelerate the Discovery of Quantum Materials

    (Funded by the U.S. Department of Energy, the National Science Foundation, and the National Aeronautics and Space Administration)
    For the first time, researchers from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), Dartmouth College, Penn State, the University of California, Merced, and Université Catholique de Louvain in Belgium have demonstrated an approach that combines high-throughput computation and atomic-scale fabrication to engineer high-performance quantum defects. The researchers developed state-of-the-art, high-throughput computational methods to screen and accurately predict the properties of more than 750 defects in a two-dimensional material called tungsten disulfide. Then, working at the Molecular Foundry, a user facility at Berkeley Lab, the researchers developed and applied a technique that enables the creation of vacancies in tungsten disulfide and the insertion of cobalt atoms into these vacancies.

  • SLAC’s high-speed electron camera uncovers new ‘light-twisting’ behavior in ultrathin material

    (Funded by the U.S. Department of Energy, U.S. Department of Defense, and the National Science Foundation)
    Researchers from the U.S. Department of Energy’s SLAC National Accelerator Laboratory and Argonne National Laboratory; Stanford University; Harvard University; Columbia University; Florida State University; and the University of California, Los Angeles, have discovered new behavior in an 50-nanometer-thick two-dimensional material, which offers a promising approach to manipulating light that will be useful for devices that detect, control or emit light, collectively known as optoelectronic devices. Optoelectronic devices are used in light-emitting diodes (LEDs), optical fibers, and medical imaging. The researchers found that when oriented in a specific direction and subjected to linearly polarized terahertz radiation, an ultrathin film of tungsten ditelluride circularly polarizes the incoming light.

  • Detecting defects in tomorrow’s technology: Study enhances understanding of likely candidate for next-generation chips

    (Funded by the National Science Foundation and the U.S. Department of Energy)
    Researchers from the U.S. Department of Energy’s Princeton Plasma Physics Laboratory and the University of Delaware have provided new insights into the variations that can occur in the atomic structure of two-dimensional materials called transition metal dichalcogenides (TMDs). The researchers found that one of the defects, which involves hydrogen, provides excess electrons. The other type of defect, called a chalcogen vacancy, is a missing atom of oxygen, sulfur, selenium, or tellurium. By shining light on the TMD, the researchers showed unexpected frequencies of light coming from the TMD, which could be explained by the movement of electrons related to the chalcogen vacancy.