Category: U.S. National Science Foundation
-
Flexible Circuits Made With Silk And Graphene on The Horizon
(Funded by the U.S. Department of Energy and the National Science Foundation)
Researchers from the U.S. Department of Energy’s Pacific Northwest National Laboratory and Lawrence Berkeley National Laboratory; the University of Washington; North Carolina State University; and Xiamen University in China have achieved a uniform two-dimensional (2D) layer of silk protein fragments on graphene, a carbon-based material useful for its excellent electrical conductivity. This combination of materials—silk-on-graphene—could form a sensitive, tunable transistor highly desired by the microelectronics industry for wearable and implantable health sensors. The researchers also see potential for their use as a key component of memory transistors or “memristors,” in computing neural networks. Memristors allow computers to mimic how the human brain functions. -
Novel coupled nanopore platform offers greater precision for detecting molecules
(Funded by the National Institutes of Health and the National Science Foundation)
Researchers from the University of Pennsylvania have demonstrated a new kind of nanopore platform that consists of two or more nanopores stacked just nanometers apart, allowing for more precise detection and control of DNA as it wiggles through. “With current platforms, when molecules like DNA are placed near the nanopores, it’s sort of like having spaghetti in a pot—tangled and difficult to work with, let alone guiding through one hole,” explains Dimitri Monos, one of the scientists involved in this study. “So, typically, researchers need to use proteins to capture, unwind, and straighten it, which, while effective, has many limitations. But with this new design, we’re essentially guiding molecules through two coupled nanopores in the material, providing a controlled, smoother passage of molecules.” -
New discovery aims to improve the design of microelectronic devices
(Funded by the National Institute of Standards and Technology, the U.S. Department of Defense, and the National Science Foundation)
Researchers at the University of Minnesota and the University of Arizona have provided new insights into how next-generation electronics break down or degrade over time. Using a sophisticated electron microscope, the researchers looked at the nanopillars within magnetic tunnel junctions – the building blocks for the non-volatile memory in smart watches and in-memory computing. The researchers ran a current through the device to see how it operates. As they increased the current, they were able to observe how the device degrades and eventually dies in real time. “What was unusual with this discovery is that we observed this burn out at a much lower temperature than what previous research thought was possible,” said Andre Mkhoyan, one of the scientists involved in this research. -
Separating viruses from saliva with sound waves for therapeutic studies
(Funded by the National Institutes of Health and the National Science Foundation)
Researchers from Duke University, the University of California, Los Angeles, the Icahn School of Medicine at Mount Sinai, and Harvard Medical School have developed a platform that uses sound waves as acoustic tweezers to sort viruses from other compounds in a liquid. The platform consists of a rectangular chip with a sample-loading inlet at one end and separate virus and waste outlets at the other end. Two acoustic beams were applied across the chip, perpendicular to the sample flow. Particles larger than 150 nanometers (nm) in diameter were trapped on the chip, particles smaller than 50 nm left through the waste outlet, and viruses of intermediate sizes (50 to 150 nm) were collected via the virus outlet. -
A window into the body: groundbreaking technique makes skin transparent
(Funded by the National Science Foundation, the National Institutes of Health, and the U.S. Department of Defense)
Researchers at Stanford University have developed a new way to see organs within a body by rendering overlying tissues transparent to visible light. The counterintuitive process – a topical application of a common food dye – was reversible in tests with animal subjects and may ultimately apply to a wide range of medical diagnostics, from locating injuries to monitoring digestive disorders to identifying cancers. To conduct their research, the scientists used a tool called an ellipsometer at the Stanford Nano Shared Facilities – open access facilities that are part of the National Science Foundation-funded National Nanotechnology Coordinated Infrastructure (NNCI). “Open access to such instrumentation is foundational for making groundbreaking discoveries, as those instruments can be deployed in new ways to generate fundamental insights about scientific phenomena,” said NSF Program Officer Richard Nash, who oversees the NSF NNCI.
