Category: National Institutes of Health
-
Butterfly wings inspire new imaging technique for cancer diagnosis
(Funded by the U.S. National Science Foundation and the National Institutes of Health)
Using the nanostructures and microstructures found on Morpho butterfly wings, scientists at the University of California San Diego have developed a simple and inexpensive way to analyze cancerous tissues. Fibrosis, the accumulation of fibrous tissue, is a key feature of many diseases, including cancer, and evaluating the extent of fibrosis in a biopsy sample can help determine whether a patient’s cancer is in an early or advanced stage. The researchers discovered that by placing a biopsy sample on top of a Morpho butterfly wing and viewing it under a standard microscope, they can assess whether a tumor’s structure indicates early- or late-stage cancer – without the need for stains or costly imaging machines. -
New lipid nanoparticle platform delivers mRNA to the brain through the blood-brain barrier
(Funded by the National Institutes of Health)
Scientists at the Icahn School of Medicine at Mount Sinai have developed a lipid nanoparticle system that can deliver messenger RNA (mRNA) to the brain via intravenous injection – a challenge that has long been limited by the protective nature of the blood-brain barrier. The system takes advantage of natural transport mechanisms within the blood-brain barrier that move nanoparticles across the blood-brain barrier. The findings, in mouse models and isolated human brain tissue, show the potential of this system for future treatments for Alzheimer’s disease, amyotrophic lateral sclerosis, brain cancer, and drug addiction. -
Tiny plastic particles can amplify pollutant absorption in plants and intestinal cells
(Funded by the U.S. Department of Agriculture and the National Institutes of Health)
Researchers from Rutgers University, the New Jersey Institute of Technology, the Connecticut Agricultural Experiment Station in New Haven, CT, and the Environmental and Occupational Health Sciences Institute in Piscataway, NJ, have shown that microplastic and nanosplastic particles in soil and water can significantly increase how much toxic chemicals plants and human intestinal cells absorb. Using a cellular model of the human small intestine, the researchers found that nano-size plastic particles increased the absorption of arsenic by nearly six-fold compared with arsenic exposure alone. The same effect was seen with boscalid, a commonly used pesticide. Also, the researchers exposed lettuce plants to two sizes of polystyrene particles – 20 nanometers and 1,000 nanometers – along with arsenic and boscalid. They found the smaller particles had the biggest impact, increasing arsenic uptake into edible plant tissues nearly threefold compared to plants exposed to arsenic alone. -
New smart sensor takes the pain out of wound monitoring
(Funded by the National Institutes of Health and the U.S. National Science Foundation)
A major challenge in self-powered wearable sensors for health care monitoring is distinguishing different signals when they occur at the same time. Now, researchers from Penn State and Hebei University of Technology in China have addressed this issue by developing a new type of flexible sensor that can accurately measure both temperature and physical strain simultaneously but separately, potentially enabling better wound healing monitoring. The sensor is made with laser-induced graphene, which forms when a laser heats certain carbon-rich materials in a way that converts their surface into a graphene structure. -
Printable molecule-selective nanoparticles enable mass production of wearable biosensors
(Funded by the U.S. National Science Foundation, the U.S. Department of Defense, and the National Institutes of Health)
Researchers from Caltech; the Beckman Research Institute at City of Hope in Duarte, CA; and the University of California, Los Angeles, have developed a technique for inkjet-printing arrays of special nanoparticles that enables the mass production of long-lasting wearable sweat sensors. These sensors could be used to monitor a variety of biomarkers – such as vitamins, hormones, metabolites, and medications – in real time, providing patients and their physicians with the ability to continually follow changes in the levels of those molecules. Wearable biosensors that incorporate the new nanoparticles have been successfully used to monitor metabolites in patients suffering from long COVID and the levels of chemotherapy drugs in cancer patients at City of Hope. “There are many chronic conditions and their biomarkers that these sensors now give us the possibility to monitor continuously and noninvasively,” says Wei Gao, one of the researchers involved in this study.