Category: National Institutes of Health
-
Lab develops smallest free-floating bubbles for medical imaging
(Funded by the National Institutes of Health)
Researchers from Rice University and the University of Texas MD Anderson Cancer Center have developed ultrasmall, stable gas-filled protein nanostructures that could revolutionize ultrasound imaging and drug delivery. These diamond-shaped, 50-nanometer gas vesicles are believed to be the smallest stable, free-floating structures for medical imaging ever created. They can penetrate tissue and reach immune cells in lymph nodes. This discovery opens up new possibilities for imaging and delivering therapies to previously inaccessible cells. “The research has notable implications for treating cancers and infectious diseases, as lymph-node-resident cells are critical targets for immunotherapies,” said George Lu, one of the researchers involved in this study. -
Nanoplastics and ‘forever chemicals’ shown to disrupt molecular structures and functionality
(Funded by the National Institutes of Health)
Researchers from The University of Texas at El Paso and the Connecticut Agricultural Experiment Station have shown that nanoplastics and per- and polyfluoroalkyl substances (PFAS) – commonly known as forever chemicals – can alter proteins found in human breast milk and infant formulas. While nanoplastics originate primarily from the degradation of larger plastic materials, like water bottles and food packaging, forever chemicals are found in various products, such as cookware and clothing. -
How Lasers and 2D Materials Could Solve the World’s Plastic Problem
(Funded by the National Institutes of Health, the National Science Foundation, and the U.S. Department of Energy)
Researchers from The University of Texas at Austin, Baylor University, Penn State, the University of California, Berkeley, the U.S. Department of Energy’s Lawrence Berkeley National Laboratory, and Tohoku University in Japan have developed a way to blast the molecules in plastics and other materials with a laser to break them down into their smallest parts for future reuse. The discovery, which involves laying these materials on top of two-dimensional (2D) materials and then lighting them up, has the potential to improve how we dispose of plastics that are nearly impossible to break down with today’s technologies. “By harnessing these unique reactions, we can explore new pathways for transforming environmental pollutants into valuable, reusable chemicals, contributing to the development of a more sustainable and circular economy,” said Yuebing Zheng, one of the researchers involved in this study.
