Category: National Institutes of Health

  • Recharging mitochondria – nanoflowers offer a new way to simulate energy production to improve aging ailments

    (Funded by the National Institutes of Health and the National Science Foundation)
    Researchers from Texas A&M University have developed molybdenum disulfide nanoflowers that can stimulate mitochondrial regeneration, helping cells generate more energy. According to Akhilesh Gaharwar, one of the researchers involved in this study, the nanoflowers could offer new treatments for muscle dystrophy, diabetes, and neurodegenerative disorders by increasing ATP production, mitochondrial DNA, and cellular respiration. “This discovery is unique,” said Vishal Gohil, another researcher involved in the study. “We are not just improving mitochondrial function; we are rethinking cellular energy entirely. The potential for regenerative medicine is incredibly exciting.”

  • Ventilator-on-a-chip compares injury caused by mechanical ventilation

    (Funded by the National Institutes of Health and the U.S. Department of Defense)
    Using a ventilator-on-a-chip developed at The Ohio State University, researchers have found that shear stress from the collapse and reopening of the air sacs is the most harmful type of damage. This miniature organ-on-a-chip model simulates lung injury during mechanical ventilation, said Samir Ghadiali, one of the scientists involved in this study. The ventilator-on-a chip’s measurement of real-time changes to cells was enabled by an innovative approach: growing human lung cells on a synthetic nanofiber membrane mimicking the complex lung matrix. This ventilator-on-a-chip is closer to the authentic ventilated lung microenvironment than any similar lung chip systems to date, the researchers said.


  • (Funded by the National Institutes of Health)
    Researchers from the University of Texas at Dallas and Vanderbilt University have found that X-rays of the kidneys using gold nanoparticles as a contrast agent might be more accurate in detecting kidney disease than standard laboratory blood tests. Based on their study in mice, the researchers also realized that caution may be warranted in using renal-clearable nanomedicines to patients with compromised kidneys. For example, they found that in mice with severely injured kidneys, nanoparticle transport through the kidneys was slowed down significantly, a situation that caused the nanoparticles to stay in the kidneys longer.

  • Novel coupled nanopore platform offers greater precision for detecting molecules

    (Funded by the National Institutes of Health and the National Science Foundation)
    Researchers from the University of Pennsylvania have demonstrated a new kind of nanopore platform that consists of two or more nanopores stacked just nanometers apart, allowing for more precise detection and control of DNA as it wiggles through. “With current platforms, when molecules like DNA are placed near the nanopores, it’s sort of like having spaghetti in a pot—tangled and difficult to work with, let alone guiding through one hole,” explains Dimitri Monos, one of the scientists involved in this study. “So, typically, researchers need to use proteins to capture, unwind, and straighten it, which, while effective, has many limitations. But with this new design, we’re essentially guiding molecules through two coupled nanopores in the material, providing a controlled, smoother passage of molecules.”

  • Separating viruses from saliva with sound waves for therapeutic studies

    (Funded by the National Institutes of Health and the National Science Foundation)
    Researchers from Duke University, the University of California, Los Angeles, the Icahn School of Medicine at Mount Sinai, and Harvard Medical School have developed a platform that uses sound waves as acoustic tweezers to sort viruses from other compounds in a liquid. The platform consists of a rectangular chip with a sample-loading inlet at one end and separate virus and waste outlets at the other end. Two acoustic beams were applied across the chip, perpendicular to the sample flow. Particles larger than 150 nanometers (nm) in diameter were trapped on the chip, particles smaller than 50 nm left through the waste outlet, and viruses of intermediate sizes (50 to 150 nm) were collected via the virus outlet.