Category: National Institutes of Health
-
Laser-induced graphene sensors made affordable with stencil masking
(Funded by the National Institutes of Health, the U.S. Department of Defense and the National Science Foundation)
Researchers at the University of HawaiĘ»i at Manoa in Honolulu have unveiled a new technique that could make the manufacture of wearable health sensors more accessible and affordable. Producing these devices often requires specialized facilities and technical expertise, limiting their accessibility and widespread adoption. So, the researchers introduced a low-cost, stencil-based method for producing sensors made from laser-induced graphene, a key material used in wearable sensing. “This advancement allows us to create high-performance wearable sensors with greater precision and at a lower cost,” said Tyler Ray, the researcher who led this study. -
Building better bone grafts
(Funded by the U.S. Department of Defense and the National Institutes of Health)
Having already created a technology that makes bone scaffolds with collagen-like nanostructures, researchers from the University of Michigan have now regenerated bone by improving cell-matrix interactions. The latest discovery is especially beneficial for patients needing repairs involving larger amounts of bone. “What we invented are biodegradable polymer templates that contain peptides on nanofibers, acting like keys to open new gates to liberate the locked bone regeneration potential from the recipient’s own cells,” said Peter Ma, one of the scientists involved in this study. -
Recharging mitochondria – nanoflowers offer a new way to simulate energy production to improve aging ailments
(Funded by the National Institutes of Health and the National Science Foundation)
Researchers from Texas A&M University have developed molybdenum disulfide nanoflowers that can stimulate mitochondrial regeneration, helping cells generate more energy. According to Akhilesh Gaharwar, one of the researchers involved in this study, the nanoflowers could offer new treatments for muscle dystrophy, diabetes, and neurodegenerative disorders by increasing ATP production, mitochondrial DNA, and cellular respiration. “This discovery is unique,” said Vishal Gohil, another researcher involved in the study. “We are not just improving mitochondrial function; we are rethinking cellular energy entirely. The potential for regenerative medicine is incredibly exciting.” -
Ventilator-on-a-chip compares injury caused by mechanical ventilation
(Funded by the National Institutes of Health and the U.S. Department of Defense)
Using a ventilator-on-a-chip developed at The Ohio State University, researchers have found that shear stress from the collapse and reopening of the air sacs is the most harmful type of damage. This miniature organ-on-a-chip model simulates lung injury during mechanical ventilation, said Samir Ghadiali, one of the scientists involved in this study. The ventilator-on-a chip’s measurement of real-time changes to cells was enabled by an innovative approach: growing human lung cells on a synthetic nanofiber membrane mimicking the complex lung matrix. This ventilator-on-a-chip is closer to the authentic ventilated lung microenvironment than any similar lung chip systems to date, the researchers said. -
Novel coupled nanopore platform offers greater precision for detecting molecules
(Funded by the National Institutes of Health and the National Science Foundation)
Researchers from the University of Pennsylvania have demonstrated a new kind of nanopore platform that consists of two or more nanopores stacked just nanometers apart, allowing for more precise detection and control of DNA as it wiggles through. “With current platforms, when molecules like DNA are placed near the nanopores, it’s sort of like having spaghetti in a pot—tangled and difficult to work with, let alone guiding through one hole,” explains Dimitri Monos, one of the scientists involved in this study. “So, typically, researchers need to use proteins to capture, unwind, and straighten it, which, while effective, has many limitations. But with this new design, we’re essentially guiding molecules through two coupled nanopores in the material, providing a controlled, smoother passage of molecules.”
