Category: National Institutes of Health

  • Implantable microparticles can deliver two cancer therapies at once

    (Funded by the National Institutes of Health)
    Researchers at the Massachusetts Institute of Technology have designed tiny particles that can be implanted at a tumor site, where they deliver two types of therapy: heat and chemotherapy. In a study of mice, the researchers showed that this therapy completely eliminated tumors in most of the animals and significantly prolonged their survival. To create a microparticle that could deliver both of these treatments, the researchers combined an inorganic material called molybdenum disulfide nanosheets with one of two drugs: doxorubicin or violacein. To make the particles, molybdenum disulfide and the drug are mixed with a polymer called polycaprolactone and then dried into a film that can be pressed into microparticles of different shapes and sizes. Once injected into a tumor site, the particles remain there throughout the treatment, and an external near-infrared laser is used to heat up the particles.

  • Advancing drug delivery: New framework links lipid nanoparticle structure to immune response

    (Funded by the National Institutes of Health and the National Science Foundation)
    Researchers from Carnegie Mellon University and the Indian Institute of Technology Bombay in Mumbai, India, have linked the immune response caused by lipid nanoparticles to their lipid chemistry. They found that some lipid structures bind strongly to receptors and others bind weakly. The strong interactions trigger the receptor and ultimately the immune response. The findings will help engineers tailor immune responses when designing lipid nanoparticles for drug delivery. “For vaccines, we might want something that’s more immunogenic, so that the vaccine responds better,” said Namit Chaudhary, one of the scientists involved in this study. “But if we are delivering something to the brain or the liver, for example, we might not want to evoke substantial immune responses that might cause toxicity.”

  • New blood test quickly detects earliest signs of heart attack

    (Funded by the National Institutes of Health and the National Institute of Standards and Technology)
    Researchers from Johns Hopkins University and the National Institute of Standards and Technology have developed a new blood test that diagnoses heart attacks in minutes rather than hours. The heart of the invention is a tiny chip with a groundbreaking nanostructured surface on which blood is tested. The chip’s “metasurface” enhances electric and magnetic signals during Raman spectroscopy analysis, making heart attack biomarkers visible in seconds. The tool is sensitive enough to flag heart attack biomarkers that might not be detected with current tests. “We’re talking about speed, we’re talking about accuracy, and we’re talking of the ability to perform measurements outside of a hospital,” said Ishan Barman, one of the scientists involved in this study.

  • Tiny magnetic discs offer remote brain stimulation without transgenes

    (Funded by the National Institutes of Health)
    Researchers at the Massachusetts Institute of Technology and Friedrich-Alexander University of Erlangen–Nuremberg in Germany have developed novel magnetic nanodiscs that could provide a less invasive way of stimulating parts of the brain, paving the way for stimulation therapies without implants or genetic modification. Deep brain stimulation (DBS) is a common clinical procedure that uses electrodes implanted in the target brain regions to treat symptoms of neurological and psychiatric conditions. Despite its efficacy, the surgical difficulty and clinical complications associated with DBS limit the number of cases where such an invasive procedure is warranted. The new nanodiscs could provide a more benign way of achieving the same results.

  • Nature and plastics inspire breakthrough in soft sustainable materials

    (Funded by the National Science Foundation, the U.S. Department of Energy, and the National Institutes of Health)
    Using peptides and a snippet of the large molecules in plastics, scientists at Northwestern University have developed materials made of tiny, flexible nano-sized ribbons that can be charged just like a battery to store energy or record digital information. Highly energy efficient, biocompatible and made from sustainable materials, the systems could give rise to new types of ultralight electronic devices while reducing the environmental impact of electronic manufacturing and disposal. “This is a wholly new concept in materials science and soft materials research,” said Samuel I. Stupp, the scientist who led the study. “We imagine a future where you could wear a shirt with air conditioning built into it or rely on soft bioactive implants that feel like tissues and are activated wirelessly to improve heart or brain function.”