Category: National Institutes of Health

  • New discovery may lead to more effective treatment for cardiovascular disease

    (Funded by the National Institutes of Health)
    Researchers from Case Western Reserve University, the University of Virginia, Cleveland Clinic, the University of Maryland School of Medicine, University Hospitals Cleveland Medical Center, the Louis Stokes Veterans Affairs Medical Center (Cleveland, OH), and CVPath Institute, Inc. (Gaithersburg, MD) have identified a new target to treat atherosclerosis, a condition where plaque clogs arteries and causes major cardiac issues, including stroke and heart attack. The researchers identified an inflammation-reducing molecule, called itaconate, and developed a new lipid nanoparticle-based treatment that allows itaconate to accumulate in plaque and bone marrow, where it reduces inflammation. “We’ve found that itaconate is crucial to the diet’s ability to stabilize plaques and reduce inflammation, which has been a mystery until now,” said Andrei Maiseyeu, one of the scientists involved in this study. “This discovery marks a major leap forward in the understanding of how diet-induced plaque resolution occurs at a molecular level.”

  • Improved lipid-polymer nanoparticle could advance inhalable mRNA medications and vaccines

    (Funded by the National Institutes of Health)
    Many messenger RNA (mRNA) medicines contain tiny fatty spheres, known as lipid nanoparticles, that encode proteins used by the body to treat or prevent a variety of illnesses. But most versions of lipid nanoparticles for the delivery of mRNA don’t work for inhalable medications, because the nanoparticles clump together or increase in size when sprayed into the air. Now, researchers at the Massachusetts Institute of Technology have shown that a polymer with repeating units of positively and negatively charged components – called a zwitterionic polymer – can enable mRNA-containing lipid nanoparticles to withstand nebulization (turning a liquid into a mist).

  • Off the clothesline, on the grid: MXene nanomaterials enable wireless charging in textiles

    (Funded by the National Institutes of Health)
    Researchers from Drexel University, the University of Pennsylvania, and Accenture Labs (San Francisco, CA), and Corporal Michael J. Crescenz Veterans Affairs Medical Center (Philadelphia, PA) have built a textile energy grid that can be wirelessly charged. The grid was printed on nonwoven cotton textiles with an ink composed of MXene, a type of nanomaterial that is both conductive and durable enough to withstand the folding, stretching, and washing that clothing endures. The proof-of-concept represents an important development for wearable technology, which, at present, requires complicated wiring and is limited by the use of rigid, bulky batteries that are not fully integrated into garments.

  • Implantable microparticles can deliver two cancer therapies at once

    (Funded by the National Institutes of Health)
    Researchers at the Massachusetts Institute of Technology have designed tiny particles that can be implanted at a tumor site, where they deliver two types of therapy: heat and chemotherapy. In a study of mice, the researchers showed that this therapy completely eliminated tumors in most of the animals and significantly prolonged their survival. To create a microparticle that could deliver both of these treatments, the researchers combined an inorganic material called molybdenum disulfide nanosheets with one of two drugs: doxorubicin or violacein. To make the particles, molybdenum disulfide and the drug are mixed with a polymer called polycaprolactone and then dried into a film that can be pressed into microparticles of different shapes and sizes. Once injected into a tumor site, the particles remain there throughout the treatment, and an external near-infrared laser is used to heat up the particles.

  • Advancing drug delivery: New framework links lipid nanoparticle structure to immune response

    (Funded by the National Institutes of Health and the National Science Foundation)
    Researchers from Carnegie Mellon University and the Indian Institute of Technology Bombay in Mumbai, India, have linked the immune response caused by lipid nanoparticles to their lipid chemistry. They found that some lipid structures bind strongly to receptors and others bind weakly. The strong interactions trigger the receptor and ultimately the immune response. The findings will help engineers tailor immune responses when designing lipid nanoparticles for drug delivery. “For vaccines, we might want something that’s more immunogenic, so that the vaccine responds better,” said Namit Chaudhary, one of the scientists involved in this study. “But if we are delivering something to the brain or the liver, for example, we might not want to evoke substantial immune responses that might cause toxicity.”