Category: U.S. Department of Defense
-
Physics experiment proves patterns in chaos in peculiar quantum realm
(Funded by the U.S. Department of Defense and the National Science Foundation)
Scientists from the University of California, Berkeley; the University of California, Santa Cruz; Harvard University; the University of Manchester in the United Kingdom; and the National Institute for Materials Science in Tsukuba, Japan, have conducted an experiment that confirms a theory first put forth 40 years ago stating that electrons confined in quantum space would move along common paths rather than producing a chaotic jumble of trajectories. To conduct this experiment, the scientists combined advanced imaging techniques and precise control over electron behavior within graphene, a two-dimensional material made of carbon atoms. The scientists used the finely tipped probe of a scanning tunneling microscope to first create a trap for electrons and then hover close to a graphene surface to detect electron movements without physically disturbing them. -
Sugar-like nanoparticle covering could boost cancer drug delivery
(Funded by the National Institutes of Health, the National Science Foundation, the U.S. Department of Energy, and the U.S. Department of Defense)
Researchers from the University of Mississippi have shown that using glycopolymers – polymers made with natural sugars like glucose – to coat nanoparticles that deliver cancer-fighting medication directly to tumors reduces the body’s immune response to cancer treatment. The researchers tested glycopolymer-coated nanoparticle treatments in mice with breast cancer and found that more nanoparticles reached the tumors in the glycopolymer treatment compared to more conventional treatment that uses polyethylene glycol-based nanoparticles. “Our findings highlight that the nanoparticles we’re using significantly reduce unwanted immune responses while dramatically enhancing drug delivery, both in cell and animal models,” said Kenneth Hulugalla, one of the scientists involved in this study. -
Nanoscale transistors could enable more efficient electronics
(Funded by the U.S. Department of Defense)
Researchers from the Massachusetts Institute of Technology and the University of Udine in Italy have created a new type of three-dimensional transistor using a unique set of ultrathin semiconductor materials. It features vertical nanowires only a few nanometers wide, which can deliver performance comparable to state-of-the-art silicon transistors while operating efficiently at much lower voltages than conventional devices. The transistor’s extremely small size would enable more of these 3D transistors to be packed onto a computer chip, resulting in fast, powerful electronics that are also more energy-efficient. “This is a technology with the potential to replace silicon, so you could use it with all the functions that silicon currently has, but with much better energy efficiency,” says Yanjie Shao, the scientist who led this study. -
Researchers unlock a ‘new synthetic frontier’ for quantum dots
(Funded by the U.S. Department of Energy, U.S. Department of Defense, and the National Science Foundation)
Researchers from the University of Chicago; the University of California, Berkeley; Northwestern University; the University of Colorado Boulder; and the U.S. Department of Energy’s Argonne National Laboratory have developed a new technique for growing quantum dots – nanocrystals used in lasers, quantum light-emitting diode (QLED) televisions, and solar cells. The researchers replaced organic solvents typically used to create quantum dots with molten salt – literally superheated sodium chloride of the type sprinkled on baked potatoes. “Sodium chloride is not a liquid in your mind, but assume you heat it to such a crazy temperature that it becomes a liquid … [N]obody ever considered these liquids as media” for the synthesis of quantum dots, said Dmitri Talapin, one of the scientists involved in this study. -
Room temperature electrical control could heat up future technology development
(Funded by the National Science Foundation and the U.S. Department of Defense)
Researchers from Penn State, the Massachusetts Institute of Technology (MIT) (including @MIT_ISN), and North Carolina Agricultural and Technical State University have discovered a different version of the Hall effect, called the nonreciprocal Hall effect, which, unlike the conventional Hall effect, does not require a magnetic field. In particular, in this case, the Hall voltage is proportional to the square of the current instead of being proportional to the current. Also, unlike the conventional Hall effect, which is driven by a force induced by the magnetic field, the nonreciprocal Hall effect arises from flowing electrons interacting with platinum nanoparticles. This discovery could lead to applications in the development of quantum communication and harvesting of energy via radio frequencies.
