Category: U.S. Department of Defense

  • New, more sustainable method for manufacturing microchips and other nanoscale devices

    (Funded by the National Science Foundation and the U.S. Department of Defense)
    Putting 50 billion transistors into a microchip the size of a fingernail is a feat that requires manufacturing methods of nanometer-level precision. The process relies heavily on solvents that carry and deposit materials in each layer – solvents that can be difficult to handle and toxic to the environment. Now, researchers from Tufts University and Istituto Italiano di Tecnologia in Milan, Italy, have developed a nanomanufacturing approach that uses water as the primary solvent, making it more environmentally compatible and opening the door to the development of devices that combine inorganic and biological materials.

  • Graphene-quantum dot hybrid enables compact multispectral light detection

    (Funded by the National Science Foundation and the U.S. Department of Defense)
    Researchers from the University of California San Diego have developed an innovative approach to multispectral photodetection by alternating layers of graphene and colloidal quantum dots. By carefully engineering the material stack, the researchers created photodetectors sensitive to different wavelength bands without additional optical components. The key innovation lies in using graphene monolayers as independent charge collectors at different depths within a quantum dot absorber layer.

  • Tunable metasurface can control optical light in space and time, offering path to wireless communication channels

    (Funded by the U.S. Department of Defense)
    Caltech engineers have built a metasurface patterned with tunable nanoscale antennas capable of reflecting an incoming beam of optical light to create many channels of different optical frequencies. The work points to a promising route for the development of not only a new type of wireless communication channel but also potentially new range-finding technologies and even a novel way to relay larger amounts of data to and from space. “With these metasurfaces, we’ve been able to show that one beam of light comes in, and multiple beams of light go out, each with different optical frequencies and going in different directions,” says Harry Atwater, one of the engineers involved in this study. “It’s acting like an entire array of communication channels. And we’ve found a way to do this for free-space signals rather than signals carried on an optical fiber.”

  • New technique to diagnose cancer metastasis uses origami nanoprobes

    (Funded by the U.S. Department of Defense and the National Institutes of Health)
    Engineers at Johns Hopkins University have created a new optical tool that could improve cancer imaging. Their approach uses tiny nanoprobes that light up when they attach to aggressive cancer cells, helping clinicians distinguish between localized cancers and those that are metastatic and have the potential to spread throughout the body. The team found that unlike CT or MRI scans, the nanoprobes effectively and consistently bound to metastatic prostate cancer cells and differentiated between them and non-metastatic cells.

  • Atomically thin transducers could one day enable quantum computing at room temperature

    (Funded by the U.S. Department of Defense and the U.S. Department of Energy)
    To function, quantum computers need to be kept very cold – just a few degrees above absolute zero. Now, researchers at Northeastern University, the University of California, Berkeley, the U.S. Department of Energy’s Lawrence Berkeley National Laboratory, and the National Institute for Materials Science in Tsukuba, Japan, have shown that one day, it might be possible to run quantum computers at room temperature. The researchers identified novel van der Waals heterostructures (created by combining layers of atomically thin materials, including graphene) that allow control of the coherent movements of atoms out of their equilibrium positions – also called acoustic phonons – at terahertz frequencies. With current quantum computer transistors, the control of acoustic phonons is limited to the gigahertz range. So, increasing the range of these transistors into terahertz frequencies – an increase by a factor of a thousand – opens the possibility of running quantum computers at room temperature.