Category: U.S. Department of Defense

  • Alzheimer’s drug may someday help save lives by inducing a state of ‘suspended animation’

    (Funded by the U.S. Department of Defense and the National Science Foundation)
    Researchers from Harvard University and the University of Castilla-La Mancha in Spain have been able to successfully put tadpoles into a hibernation-like torpor state using donepezil, a drug approved by the U.S. Food and Drug Administration to treat Alzheimer’s. This advance means that donepezil could potentially be repurposed for use in emergency situations to prevent irreversible organ injury while a person is being transported to a hospital. When used on its own, the drug seemed to cause some toxicity in the tadpoles, so the researchers encapsulated donepezil inside lipid nanocarriers, which reduced toxicity and caused the drug to accumulate in the tadpoles’ brain tissue – a promising result, because the central nervous system is known to mediate hibernation and torpor in animals.

  • World’s first micromachine twists 2D materials at will

    (Funded by the U.S. Department of Defense and the National Science Foundation)
    Just a few years ago, researchers discovered that changing the angle between two layers of graphene, an atom-thick sheet of carbon, also changed the material’s electronic and optical properties. To study the physics underlying this phenomenon, researchers usually produce tens to hundreds of different configurations of the twisted graphene structures – a costly and labor-intensive process. Now, researchers from the Massachusetts Institute of Technology, Harvard University, Stanford University, the University of California, Berkeley, and the National Institute for Materials Science in Tsukuba, Japan, have created a device that can twist a single structure in countless ways. In other words, the researchers demonstrated the world’s first micromachine that can twist two-dimensional (2D) materials at will.

  • URI-led study holds promise for advancing modular quantum information processing

    (Funded by the U.S. Department of Defense)
    Researchers from the University of Maryland, the University of Maryland, the University of California, Los Angeles, and the National Institute of Standards and Technology have envisioned a modular system for scaling quantum processors with a flexible way of linking qubits over long distances. While there are many types of qubits, the researchers chose to study quantum dot-based spin qubits that interact through microwave photons in a superconducting cavity. (Quantum dots are semiconductor nanoparticles that have unique size- and shape-dependent optoelectronic properties.) The researchers provided comprehensive guidelines for tailored long-distance entangling links by making multiple frequencies available for each qubit to become linked with microwave cavity photons of a given frequency.

  • Purdue physicists throw world’s smallest disco party

    (Funded by the U.S. Department of Defense, the U.S. Department of Energy, and the National Science Foundation)
    Physicists from Purdue University, Washington University in St. Louis, and the U.S. Department of Energy’s Sandia National Laboratories have levitated a fluorescent nanodiamond and spun it at incredibly high speeds (up to 1.2 billion times per minute). The fluorescent diamond emitted and scattered multicolor lights in different directions as it rotated. When illuminated by a green laser, the nanodiamond emitted red light, which was used to read out its electron spin states. An additional infrared laser was shone at the levitated nanodiamond to monitor its rotation. Like a disco ball, as the nanodiamond rotated, the direction of the scattered infrared light changed, carrying the rotation information of the nanodiamond.

  • Studying Loss to Make Quantum Computing Gains

    (Funded by the U.S. Department of Energy and the U.S. Department of Defense)
    Scientists from Yale University and the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory (BNL) have developed a systematic approach to understanding how energy is lost from the materials that make up qubits. Energy loss inhibits the performance of these quantum computer building blocks, so determining its sources can help bring researchers closer to designing quantum computers. To conduct this work, the scientists used electron microscopes from the Center for Functional Nanomaterials, a DOE-funded user facility at BNL.