Biomedical

Biomedical includes nanomedicine, vaccines, wearable electronics, implants, lab-grown tissues, nanorobots, microfluidics, biotechnology, imaging

Improved lipid-polymer nanoparticle could advance inhalable mRNA medications and vaccines

Many messenger RNA (mRNA) medicines contain tiny fatty spheres, known as lipid nanoparticles, that encode proteins used by the body to treat or prevent a variety of illnesses. But most versions of lipid nanoparticles for the delivery of mRNA don't work for inhalable medications, because the nanoparticles clump together or increase in size when sprayed into the air.

New, sprayable psoriasis drug delivery system uses ‘trojan horse’ style of nanoparticle

Researchers at the University of Massachusetts Amherst and the University of Massachusetts-Chan Medical School in Springfield, MA, have invented a new, sprayable delivery system for psoriasis medication that can be applied easily and locally to psoriasis lesions. The delivery system makes use of nanoparticles that contain psoriasis drugs, and these nanoparticles act like a trojan horse – the immune cells do not recognize the nanoparticles as a threat, but the medication they carry disrupts the overactive immune response.

New discovery may lead to more effective treatment for cardiovascular disease

Researchers from Case Western Reserve University, the University of Virginia, Cleveland Clinic, the University of Maryland School of Medicine, University Hospitals Cleveland Medical Center, the Louis Stokes Veterans Affairs Medical Center (Cleveland, OH), and CVPath Institute, Inc. (Gaithersburg, MD) have identified a new target to treat atherosclerosis, a condition where plaque clogs arteries and causes major cardiac issues, including stroke and heart attack.

Tumor cells suffer copper withdrawal

Copper plays a key role in the growth and development of cells. Because cancer cells grow and multiply more rapidly than non-cancer cells, they have a significantly higher need for copper ions. Restricting their access to copper ions could be a new therapeutic approach. The problem is that it has, so far, not been possible to develop a system that binds copper ions with sufficient affinity to "take them away" from copper-binding biomolecules.

Sugar-like nanoparticle covering could boost cancer drug delivery

Researchers from the University of Mississippi have shown that using glycopolymers – polymers made with natural sugars like glucose – to coat nanoparticles that deliver cancer-fighting medication directly to tumors reduces the body's immune response to cancer treatment. The researchers tested glycopolymer-coated nanoparticle treatments in mice with breast cancer and found that more nanoparticles reached the tumors in the glycopolymer treatment compared to more conventional treatment that uses polyethylene glycol-based nanoparticles.

Faster, more sensitive lung cancer detection from a blood draw

A new way of diagnosing lung cancer with a blood draw is 10 times faster and 14 times more sensitive than earlier methods, according to researchers from the University of Michigan and Rensselaer Polytechnic Institute. The microchip that the researchers developed captures nanoscale particles called exosomes – tiny packages released by cells – from blood plasma to identify signs of lung cancer.

Platform combines graphene oxide with antibodies to enhance CAR-T cell therapy

Researchers from the University of California, Los Angeles, have unveiled a new platform that combines a flexible material called graphene oxide with antibodies to closely mimic the natural interactions between immune cells. The investigators found that this platform shows a high capacity for stimulating T cells to reproduce, while preserving their versatility and potency. The advance could make CAR-T cell therapy more effective and accessible.

Paper-based sensor offers rapid cardiac diagnostics in 15 minutes

In a significant advancement for point-of-care medical diagnostics, a team of researchers from the University of California, Los Angeles, has introduced a deep learning-enhanced, paper-based vertical flow assay capable of detecting cardiac troponin I with high sensitivity. Troponin I is a protein released when the heart muscle has been damaged. The innovative assay integrates deep learning algorithms with cutting-edge nanoparticle amplification chemistry and could enable access to rapid and reliable cardiac diagnostics, particularly in resource-limited settings.

Nature and plastics inspire breakthrough in soft sustainable materials

Using peptides and a snippet of the large molecules in plastics, scientists at Northwestern University have developed materials made of tiny, flexible nano-sized ribbons that can be charged just like a battery to store energy or record digital information. Highly energy efficient, biocompatible and made from sustainable materials, the systems could give rise to new types of ultralight electronic devices while reducing the environmental impact of electronic manufacturing and disposal. "This is a wholly new concept in materials science and soft materials research," said Samuel I.

A matter of taste: Electronic tongue reveals AI inner thoughts

Scientists from Penn State and the National Aeronautics and Space Administration’s Goddard Space Flight Center have developed an electronic tongue that can identify differences in similar liquids, such as milk with varying water content; different soda types and coffee blends; and signs of spoilage in fruit juices. The researchers also found that results were more accurate when artificial intelligence (AI) used its own assessment parameters to interpret the data generated by the electronic tongue.