Development of Geochemical Reference Materials

Stephen A. Wilson
QCM development options

- Single source material
 - Representative
 - Specific element profile
 - One site collection
 - Sample contamination
 - 1000’s samples

- Multi-source material
 - Detect conc. all elements
 - Natural mineralogy
 - Matrix match
 - Soils, sediments
 - Blending program
 - 1000’s samples
Material preparation

Representative Sample Collection

- Rock, Crushing
- Soil, Disag, Sieve <2mm

Grinding

- Jet Mill
- Impact Mill
- Pulse Mill

Blending

Splitting
Spinning Riffler
GRM development with spike addition

Option #1 bulk analysis
Option #2 analyte analysis
Material preparation option #1

Sample matrix

Grinding

Blending

Splitting

Analyte addition

Analyte addition
Material preparation option #2

Sample matrix

Grinding

Analyte addition

Blending

Disaggregate

Splitting

Wet

Dry

USGS
Homogeneity testing

• Stratified random sampling (every 100th sample)
• Bulk chemical analysis
• Between and within bottle assessment
• Intra-laboratory testing
• Statistical analysis compile data
• Certificate of analysis
USGS methods of analysis

- Major element analysis WDXRF
- Minor & Trace element analysis

 ICP-AES, ICP-MS, INAA, HY-AAS, GF-AAS
- Isotope analysis MC-ICP-MS, ID
- Microanalysis SEM, EPMA, TEM, LA-ICP-MS
- Extractive analysis

 EPA 3050/3051, Lung/Gastric fluid,
Collaborative studies

- NIST
 Soils, Mine waste, Sediments, Coal
- EPA
 Soils, potable water/pipe scale
- NASA
 Lunar regolith, nano phase iron/glass
- Industrial
 Titanium ores, Gold ores,
Items to consider

- Matrix matching important
- Analyte homogeneity
- Analyte preservation (physical characteristics)
- Representative sample size
- Develop prototype material(s) improve fidelity
- Develop sufficient supplies
- Intra-laboratory, multi-method testing