

NSF National ATE Center for Nanotechnology Applications and Career Knowledge (NACK)

Osama O. Awadelkarim, Associate Director
Center for Nanotechnology Education and Utilization &
Nanotechnology Applications and Career Knowledge Center
The Pennsylvania State University

NACK's Mission

- 1. Build partnerships in nanotechnology education among Research Universities, 2-year Community and Technical Colleges, and 4-year Colleges/Universities through:
 - Resource sharing (courses, programs, laboratory facilities, staff)
 - Creating education pathways through these institutions for student development
- Develop the means to enable a broad nanotechnology education in synthesis, fabrication, characterization, and applications at 2-year Community and Technical Colleges in every region of the US
- 3. Educate students for careers in a spectrum of industries by advocating a knowledge base which can be used in many types of applications and companies
- Insure that this broad nanotechnology education is one which students can build upon throughout their professional careers

Suite of Six Nanotechnology Courses

E SC 211	Material, Safety and	l Equipment Ove	rview for N	'anotechnology
----------	----------------------	-----------------	-------------	----------------

E SC 212 Basic Nanotechnology Processes

E SC 213 Materials in Nanotechnology

E SC 214 Patterning for Nanotechnology

E SC 215 Materials Modification for Nanotechnology Applications

E SC 216 Characterization, Testing of Nanotechnology Structures and Materials

Teaching Cleanroom: Hands-On Experience

Remote Access & Control of Nano Equipment

From our lab...

...to any classroom

Center for Nanotechnology Education and Utilization

Pennsylvania's Nanotechnology Innovator!

Faculty Development: Educator Workshops

Statistics

Attendees to Date

- 939 Educators
- •30 States, DC, and Puerto Rico

Upcoming Webinars

- Introduction to Nanofabrication: Top Down and Bottom Up February 25, 2011
- Nanotech Works Alumni Success Stories March 25, 2011
- Nanotechnology in Medicine
 April 29, 2011
- Recruiting Under-Represented Minorities May 26, 2011

downloadable Modules

Portal to NACK Resources

Center for Nanotechnology Education and Utilization

Pennsylvania's Nanotechnology Innovator!

National Industry Advisory Board

Riological Laboratory

Production Scientist

 Alcatel-Lucent; Boeing; Corning; Cyoptics; Dupont; General Electric; Imerys; Johnson & Johnson; Lockheed Martin; 3M; National Coalition for Advanced Technology Centers; Northup Grumman; Plextronics; PPG; Semiconductor Research Corporation; Strategic Polymers; Stryker; and Tyco Electronics

Some Job Titles Held by Nanotechnology 2-Year Degree Graduates

Laboratory Toch

Tech.	Laboratory Tech.	Production Scientist
Biofuels Tech.	Lithography Tech.	Quality Control Tech.
Chemical Laboratory Tech.	Materials Science Lab Tech.	Research Assistant
Cleanroom Tech.	Medical Devices Tech.	SEM Operator
Deposition Tech.	Microfabrication Tech.	SPM Operator
Device Tech.	Nanobiotech Researcher	Scientist Specialist
Equipment Maintenance Tech.	Nanoelectronics Expert	Solid State Tech.
Engineering Tech.	Nanofabrication Tech.	Test Tech.
Etch Tech.	Nanotechnologist	Thin Films Tech.
Failure Analysis Tech.	Process Tech.	Vacuum Tech.

The Perfect Storm

3 Events that have effected RSL Initiatives

- The Great Recession Sept. 2008- Present Two recessions during a 10 year period 2000-2010. Investment in Nanotechnology Community during and after the Dot.com bust.
- Venture Capital Investment in the Nanotechnology Community
- 3) Lack of Liquidity Exits IPOs and M&A activity from 2000-2012

Early Stage VC Investment

 Early Stage VC Investment and the 10-year annual return (from October 1, 2001 to September 30, 2011) is 0.9% vs 3.3% for the NASDAQ and 2.8% for the S&P 500. The risk/return world turned upside down!

NNCO NNI Workshop RSL 2012 May 1-3, 2012

Vincent Caprio, Executive Director

www.Nanobca.org www.Nanoevent.org www.VincentCaprio.org

Historical Comparison

 For historical comparison, the 25-year early stage VC return is 21% vs 8% for the NASDAQ and 9% for the S&P 500, which is a more reasonable risk/return profile.

Venture Capital Investments

 Venture Capital commitments hit a peak of \$105 billion in 2000 with the number of VC funds at 649. Last year, VC commitments were \$18.2 billon with the number of funds at 169.

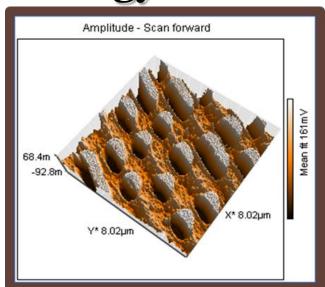
2011 Nanotechnology Exits

(Harris and Harris)

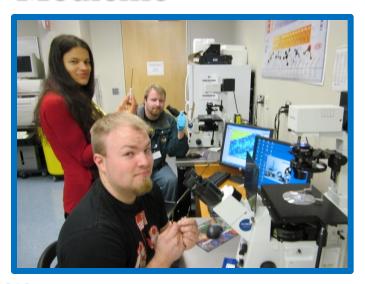
- 1. Solazyme (IPO) http://solazyme.com/
- 2. NeoPhotonics (IPO) http://www.neophotonics.com/
- 3. BioVex (acquired by Amgen) http://www.biovex.com/
- 4. Innovalight (acquired by DuPont)
 http://www2.dupont.com/Photovoltaics/en US/products ser vices/silicon inks/silicon inks.html
- 5. Crystal IS (acquired but not publicly disclosed) <u>http://www.crystal-is.com/</u>

The Future of Exits

2012 and Beyond


Will we have 25 liquidity exits in the next 5 years?

An economic force multiplier

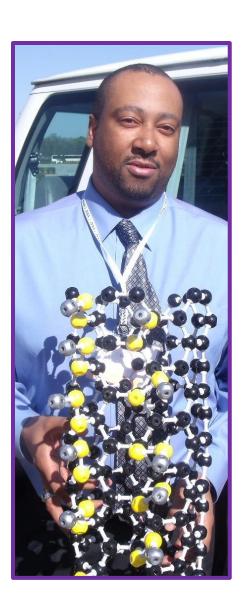

NanoElectronics

- □ Textiles
- □ Vehicles
- **□**Energy

NanoBiotechnology

- ☐ Drug Delivery
- □ Pharmaceuticals
- ☐ Regenerative Medicine

Zero-d, one-d, and two-d


Nanoparticle Counting < 50nm

Nanotube Fabrication and Mixing

Thin-Film Spin-Coating

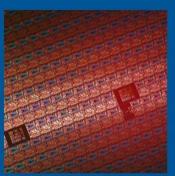
Kevin J. Conley 2012

Barriers to development

1. International Competition

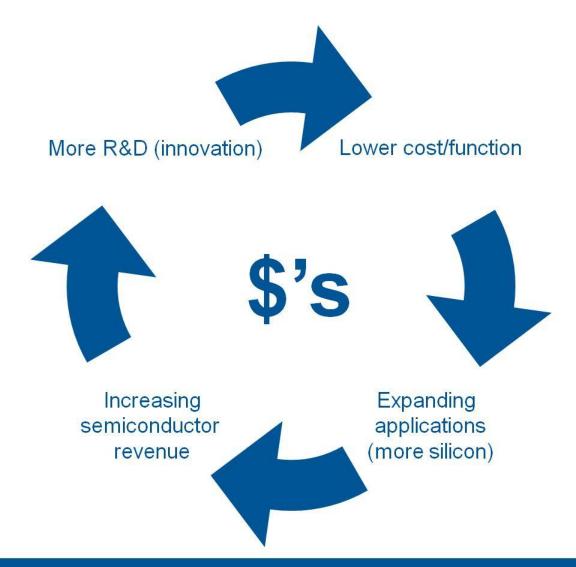
2. EHS

3. American Corporate & Workforce Integration

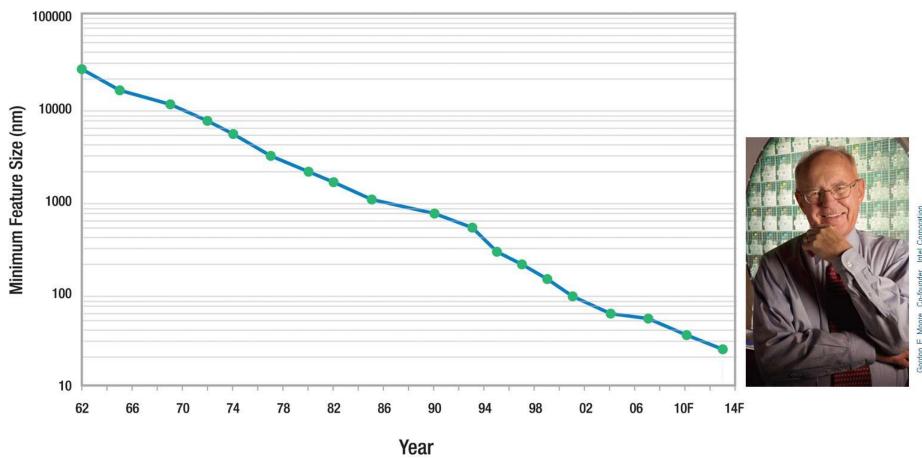


Accelerating the next technology revolution

SEMATECH Overview

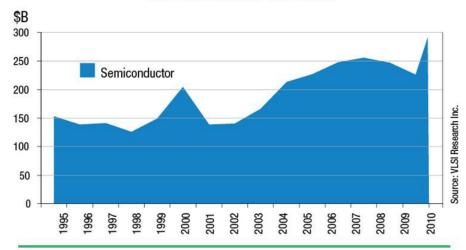


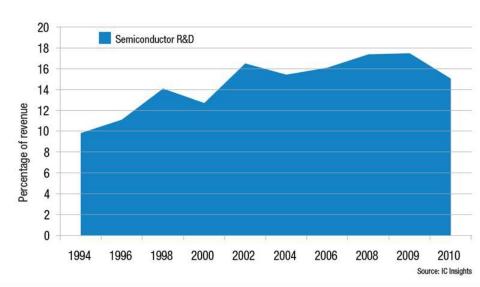
Semiconductor industry – virtuous cycle



1 May 2012

Moore's Law


Minimum Device Feature Size Trends


Gordon E. Moore, Co-founder, Intel Corporation. Copyright © 2005 Intel Corporation.

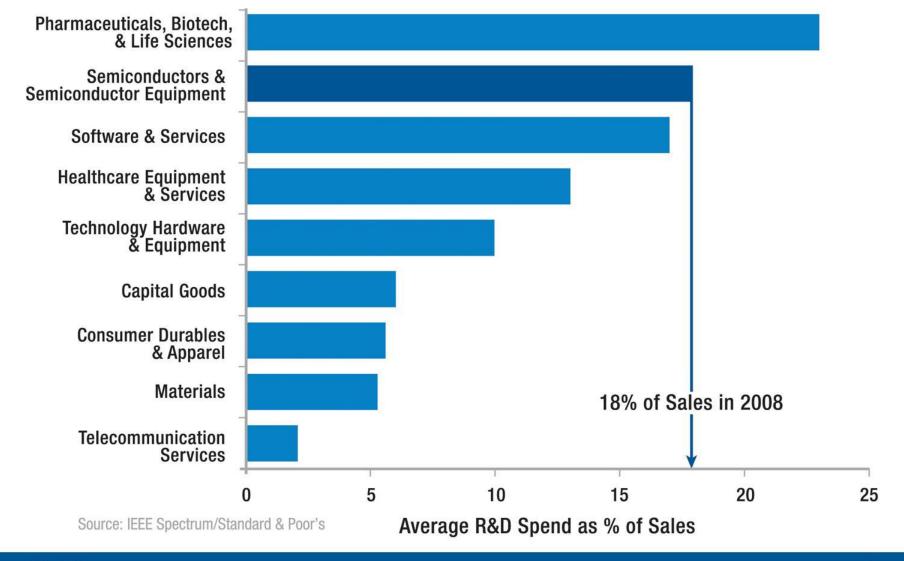
Semiconductor revenue

Semiconductor R&D as a % of revenue

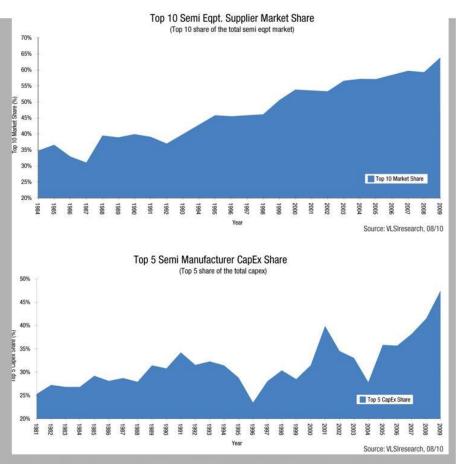
Trends

- Semiconductor revenue growth rate declines
- Roadmap costs and challenges increase

Growth markets

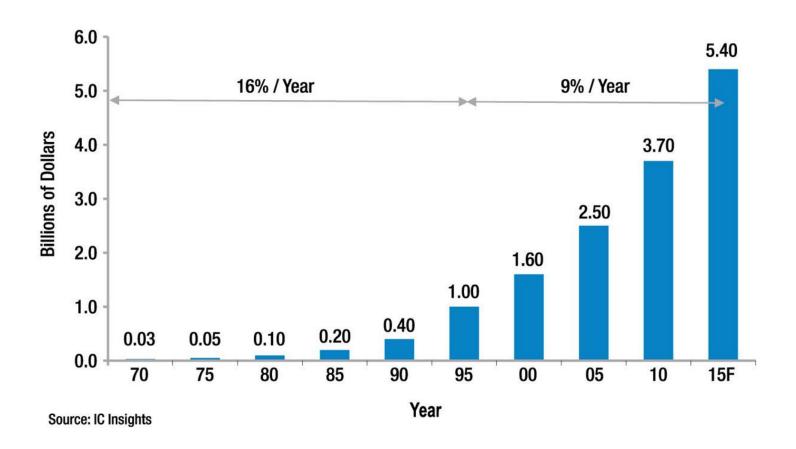


Semiconductor industry one of top R&D spenders



Trends

- Semiconductor revenue growth rate declines
- Roadmap costs and challenges increase
- Consolidation of suppliers and semiconductor manufacturers continues



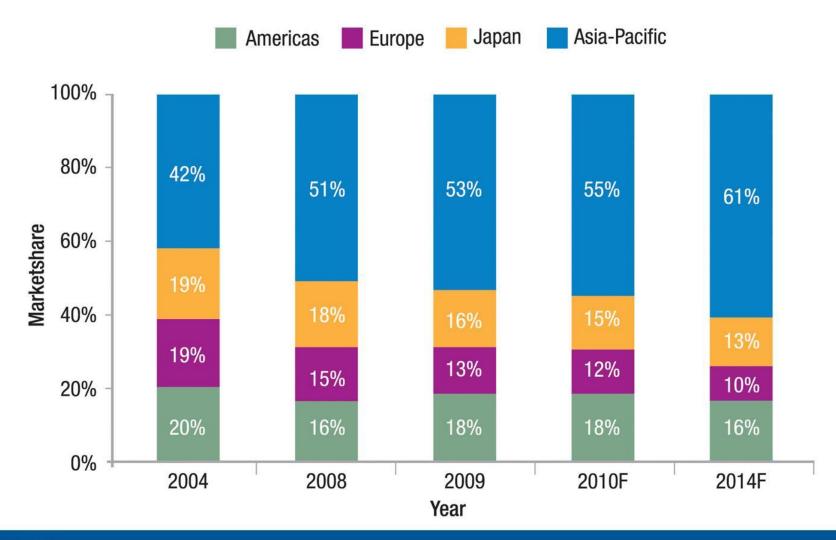
"There has been strong consolidation in semiconductor manufacturing; both in equipment supply as well as capacity....only a very few chip makers are capable of being at the leading edge."

- VLSI Research

Semiconductor fab cost trend

1 May 2012

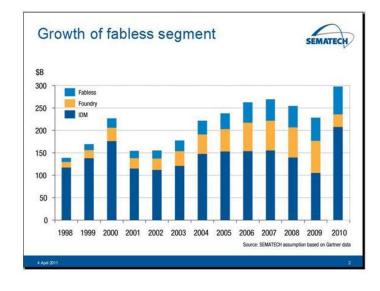
2010 semiconductor sales leaders



Rank 2010	Device	Company	Country of origin	Revenue (million \$ USD)	Market share
1	IDM/logic	Intel Corporation	United States	40	13.2%
2	Memory/IDM/Foundry	Samsung Electronics	South Korea	28	9.3%
3	Memory/IDM	Toshiba Semiconductors	Japan	13	4.3%
4	Analog	Texas Instruments	United States	13	4.3%
5	IDM	Renesas Electronics (1)	Japan	12	3.9%
6	Memory	Hynix	South Korea	11	3.5%
7	IDM	STMicroelectronics	France/Italy	10	3.4%
8	Memory	Micron Technology (2)	United States	9	2.9%
9	Fabless	Qualcomm	United States	7	2.4%
10	Memory	Elpida Memory	Japan	7	2.3%
11	Fabless	Broadcom	United States	7	2.1%
12	Logic	AMD	United States	6	2.1%
13	Logic	Infineon Technologies	Germany	6	2.0%
14	Logic/Analog	Sony	Japan	5	1.8%
15	Logic	Panasonic Corporation	Japan	5	1.7%

Source: iSuppli Corporation

Worldwide IC market by region (2004-2014)



1 May 2012

Trends

- Semiconductor revenue growth rate declines
- Roadmap costs and challenges increase
- Consolidation of suppliers and semiconductor manufacturers continues
- Evolving business models leading to further industry segmentation and diverging technology differentiation

 Consumers are driving mobility/low power and increased use of analog mixed signal, sensors and <u>MEMs</u>

1 May 2012

Trends

- Semiconductor revenue growth rate declines
- Roadmap costs and challenges increase
- Consolidation of suppliers and semiconductor manufacturers continues
- Evolving business models leading to further industry segmentation and diverging technology differentiation
- Collaborations increasingly become accepted as necessary approach within many segments of the industry

Trends	Implications	
Semiconductor revenue growth rate declines	R&D costs will continue to escalate	
 Roadmap costs and challenges increase 	Industry will consolidate further, leaving three to	
 Consolidation of suppliers and semiconductor manufacturers continues 	four leading edge technology platforms and increasing specialization of remaining industry participants	
Evolving business models leading to further industry segmentation and diverging technology.	Leadership strategies extend beyond scaling	
industry segmentation and diverging technology differentiation	Coordination and further innovation of collaborati industry initiatives will need to be addressed	
 Collaborations increasingly become accepted as necessary approach within many segments of the industry 	madaty initiatives will need to be addressed	

l May 2012 13

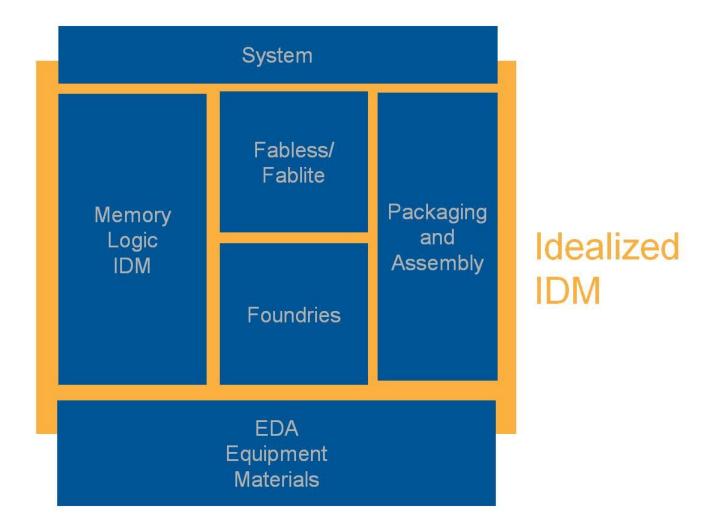
Industry structure: then

Systems

Design

Packaging and assembly

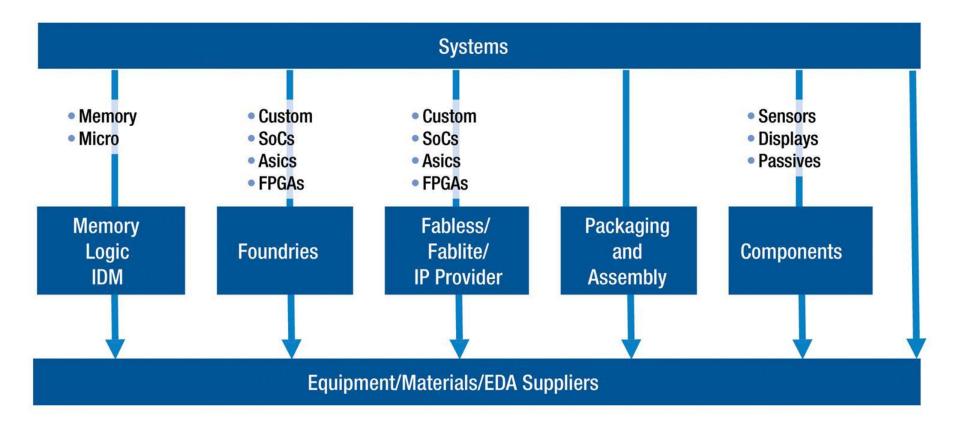
Chip technology


EDA tools

Idealized IDM

Equipment and materials

Industry structure: then and now



l May 2012 15

Today's reality for systems companies

Industry challenges: key stakeholders

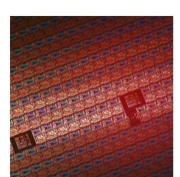
	Scaling	AMS, MEMs & Sensors	EUV	3D Interconnect	Factory Productivity	450 mm	ESH
Systems							
Design Enablement							
Fabless/Fablite							
Equip/Materials Manufacturers							
Integ. Device Manufacturers							
Mature Fabs							
Foundries							
Packaging	2						

Technology roadmap participant

1 May 2012

Too many challenges to solve alone

- Success in semiconductors is driven by technology innovation and advances in manufacturing
- Success depends on comprehensive industry-wide collaboration
 - Challenges are global, and cut across industry ecosystem
 - Solutions require significant investment, leveraged funding



Manufacturing and technology challenges and new collaborative strategies

1 May 2012

Major manufacturing technology transitions

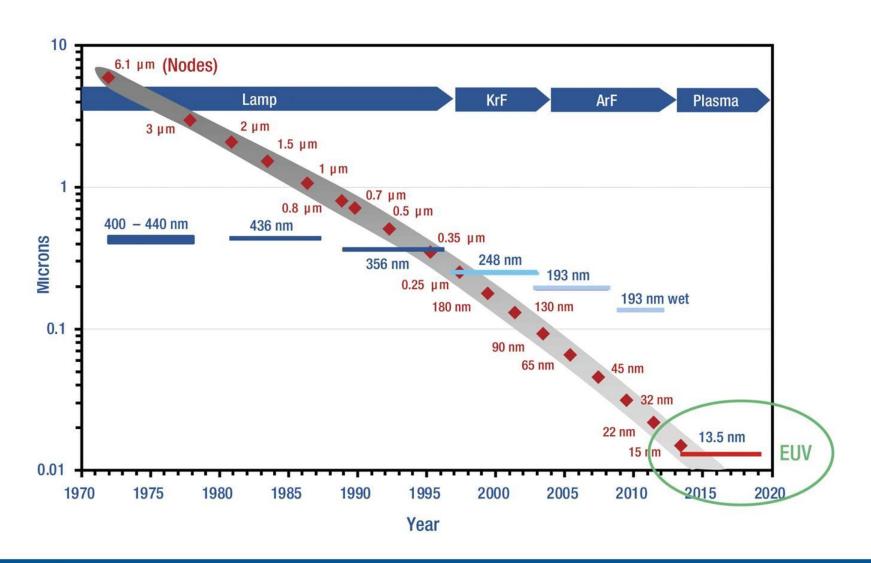
Lithography

248 nm	193 nm ——	Immersion	Double Pat -	EUV
IDM led	Consortia initiated and IDM led	IDM & supplier with consortium support		Supplier leadership +EUV/EMI consortium across supply chain

Interconnect

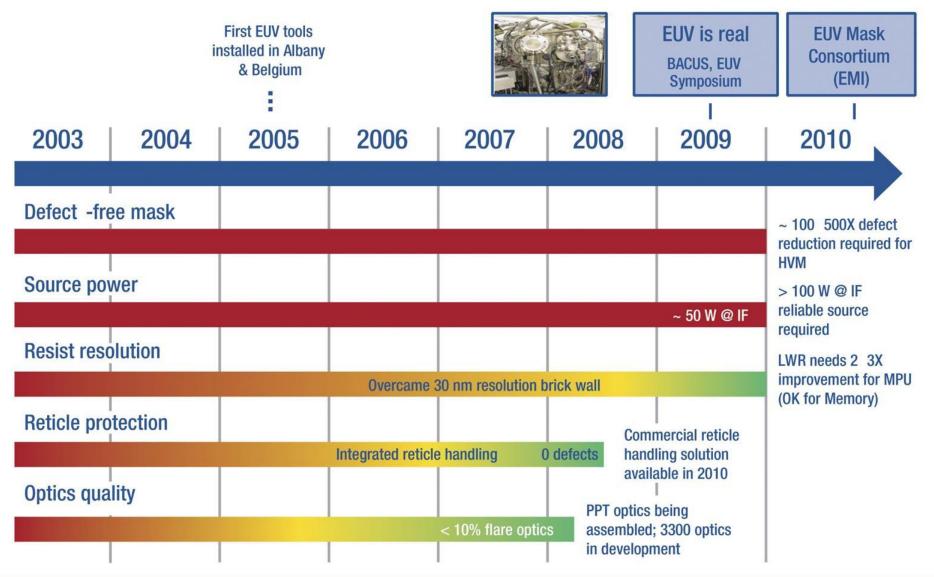
Cu	Low-k	3D
IDM led	IDM led and collaboration across consortia	Collaborative innovation across entire supply chain

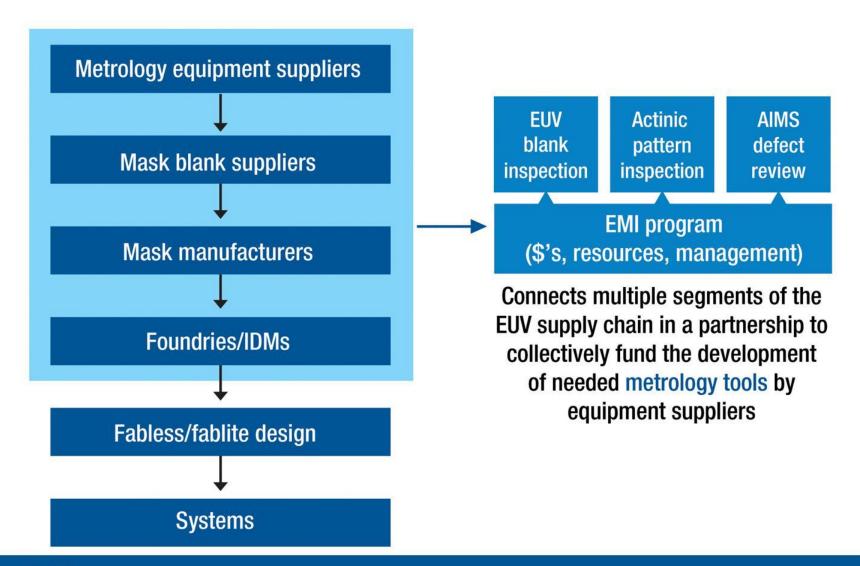
Wafer Size


200mm	300mm —	450mm
One company	Consortium of chipmakers and collaboration with other consortia	Consortium of chipmakers and enhanced supplier role

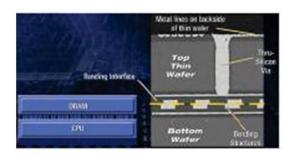
Devices

SiON	Strain	High-k	FinFETs or Ge/III-V channels or ETSOI or
Consortia initiated and IDM led	IDM led	Collaboration across consortia (FEP Research Center) and IDM led	IDM led and collaborative innovation

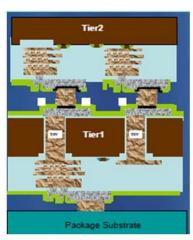

Lithography scaling


EUV progress: critical enablers

EUV Mask Infrastructure program



3D interconnect: an industry game-changer



- Non-scaling alternative to improve system performance and cost
- Enables heterogeneous integration for emerging system-on-chip applications
- Diversity of approaches:
 - Via last technology requires wafer wafer bonding
 - Via mid technology permits die wafer bonding

Source: Intel

<u>Driver:</u> Performance, power <u>Technology:</u> F2F Cu-Cu, Via last

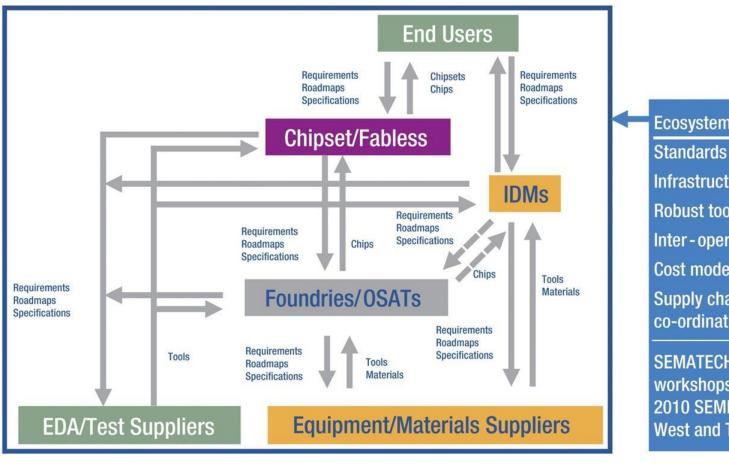
Source: Qualcomm

≤ 1.0mm

Kauppi Kupila - SEMICON Tarvan 2010 - Tarpel, Tarvan

Source: Nokia

<u>Driver:</u> Power efficient performance, functionality <u>Technology:</u> Via mid


Major industry challenges in 3D

- Immature tool infrastructure and materials
 - Numerous technology options and process flows
 - Several key tools have low productivity
 - Cost-effective solutions required for high-volume manufacturing
- Gaps in the supply chain
 - Partitioning of new processes within the supply chain
 - Standards to permit chips from multiple suppliers to work together
- Lack of convergence on infrastructure and standards delays industry success
 - Need common materials and equipment path to serve a broad industry base

3D supply chain alignment

Ecosystem needs

Infrastructure

Robust tooling

Inter-operability

Cost models

Supply chain co-ordination

SEMATECH workshops at 2010 SEMICON West and Taiwan

3D ecosystem development - 2010

- SEMATECH Workshops on Stress Management For 3D ICs
 - Three sessions in 2010
- SEMI/SEMATECH 3D Interconnect Challenges & Standards Workshop
 - July 13, 2010 (SEMICON West, San Francisco, CA)
- SEMATECH Workshop on 3D Interconnect Metrology
 - July 14, 2010 (SEMICON West, San Francisco, CA)
- SIA (Technical Steering Committee)
 - July 15, 2010 (San Jose, CA) kickoff
 - October 7, 2010 DARPA (Wash. DC) workshop
- 3D Executive Forum
 - September 8, 2010 (Taipei)
- Joint SEMI/SEMATECH IC Technology Forum
 - September 9, 2010 (SEMICON Taiwan, Taipei)

Ecosystem needs

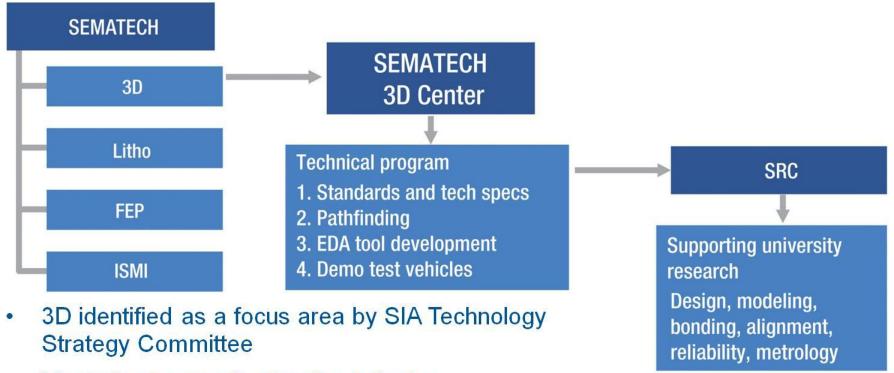
Standards

Infrastructure

Robust tooling

Inter-operability

Cost models


Supply chain co-ordination

- Heterogeneous stacking of wide IO DRAM on logic is a key application
- 3D is only way to support bandwidths >12.8 GB/s
- 2013 is benchmark year for volume production

May 2012

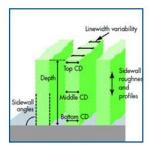
3D enablement program: SIA-SEMATECH-SRC

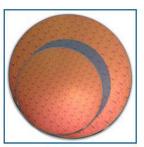
- Meet diverse needs of entire industry
 - High performance, mobile, analog, mixed signal, MEMS, fabless, fablite, IDMs
- Initial two-year program, 10-15 companies
- Program announced December 8, 2010

Improving manufacturing productivity through SEMATECH ISMI

- Addressing the manufacturing needs and requirements of both leading-edge and mature/mainstream fabs, through tailored opportunities for benchmarking and shared learning
- Developing new environment, safety, and health technologies for resource conservation and manufacturing sustainability
- Coordinating with the industry to drive early standards, guidelines, and infrastructure for a cost-effective transition to the next wafer size

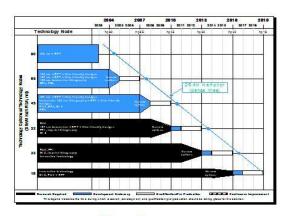
Councils and Forums


Mature Fabs


Manufacturing Capabilities

ESH Technology

Metrology Technology

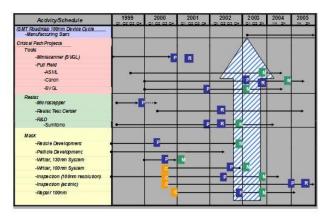


450mm Transition

1 May 2012

Core competencies




0.98
0.96
0.90
Quarterly Maximum
0.90
0.88
Quarterly Minimum
0.90
0.88
Quarterly Minimum
Quarterly Minimum
Quarterly Minimum

Roadmaps

Benchmarking

Standards

Equipment Productivity Forums

Manager Forums/Councils

Project Management


NanoHealth and Safety Center (NSC)

- New Center announced
- Formation of the New York NanoHealth and Safety Center (NSC)
 - Announced February 15th by SEMATECH & CNSE
 - A significant development offering broader industry engagement
 - Funding of at least \$10 million over the next five years

For Release: Immediate - Tuesday, February 15, 2011

Contact: Steve Janack, Vice President for Marketing and Communications, CNSE

(phone) 518-956-7322 (cell) 518-312-5009 (e-mail)

sjanack@uamail.albany.edu

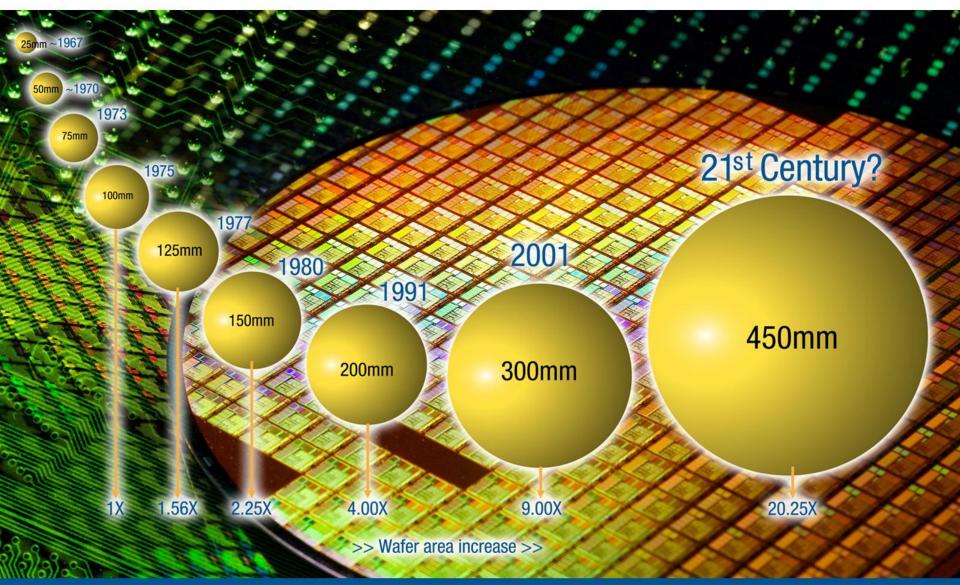
Erica McGill, Media Relations Manager, SEMATECH

(phone) 518-649-1041 (cell) 518-487-8256 (e-mail)

erica.mcgill@sematech.org

SEMATECH, ISMI AND UALBANY NANOCOLLEGE PARTNER TO LAUNCH GROUNDBREAKING NANOHEALTH AND SAFETY CENTER

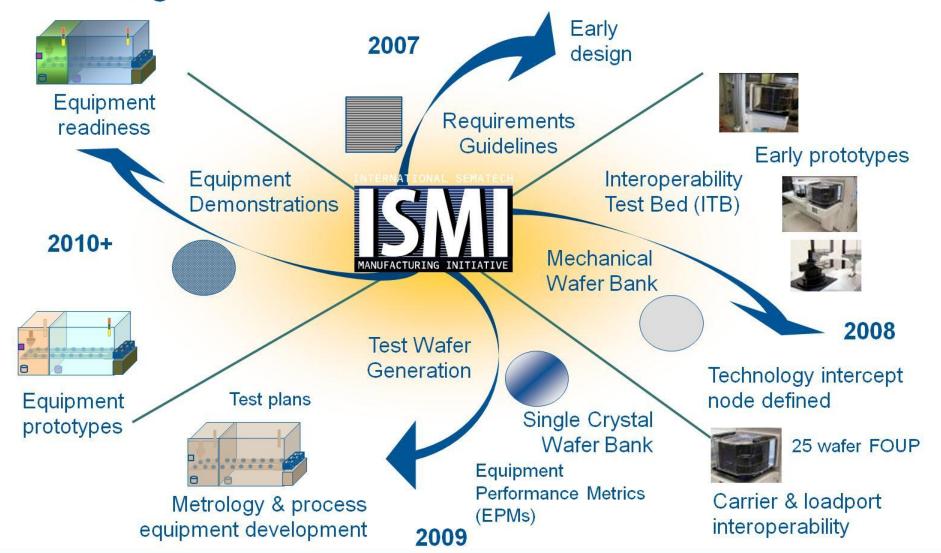
Pioneering global consortium will proactively explore occupational and environmental health and safety for nanoelectronics research and manufacturing


Albany, NY – Demonstrating an unparalleled commitment to the development and implementation of innovative protocols and procedures to conserve resources and safeguard occupational and environmental health and safety (EHS) in the nanoelectronics industry, SEMATECH, a global consortium of chipmakers, its subsidiary, the International SEMATECH Manufacturing Initiative, Inc. (ISMI), and the College of Nanoscale Science and Engineering (CNSE) of the University at Albany today announced the creation of the world's first NanoHealth and Safety Center (NSC), headquartered at CNSE's Albany NanoTech Complex.

As the first and only comprehensive partnership of its kind in the world, the NSC will align both ongoing and new programs and initiatives of SEMATECH, ISMI and CNSE, along with a host of global corporate partners, to form the world's leading nanotechnology health and safety research and development enterprise. With funding of at least \$10 million over the next five years, this international center is expected to catalyze the creation of more than 100 high-tech EHS jobs at the

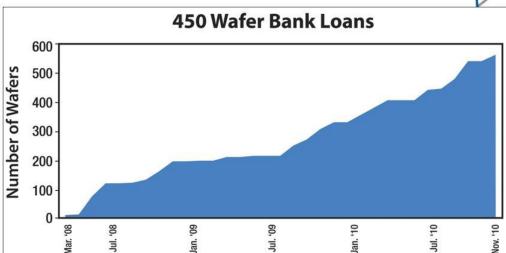
1 May 2012

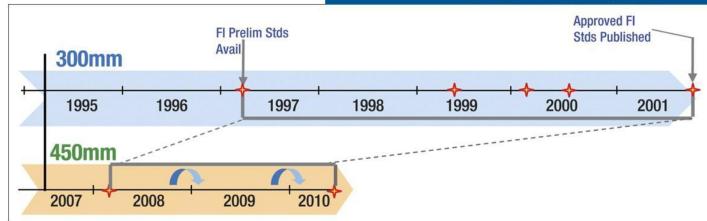
Progress in silicon wafer substrates



1 May 2012 3.

450mm: coordinating industry convergence




450mm progress

- Interoperability Test Bed established
- 450mm wafer bank established (300 wafers)
- 450mm equipment developed
- Guidelines, metrics and test plans defined
- 450mm standards completed through SEMI

ISMI's wafer bank has loaned >550 wafers – at no cost to suppliers

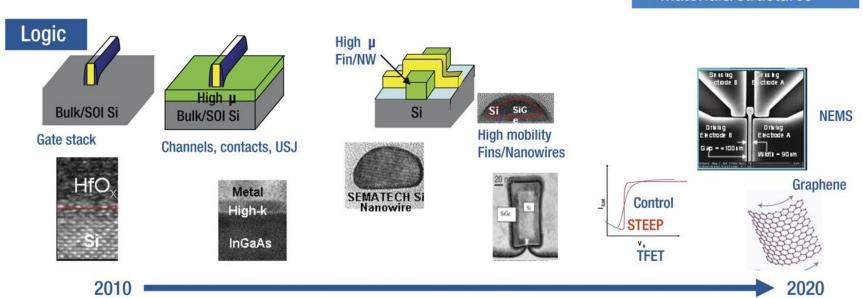
ISMI's Test Bed helps enable a 60% reduction in time to standards versus 300mm

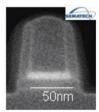
ISMI 450mm program expansion

Oct. 2010: \$20M from New York accelerates ISMI's 450mm program

- Increase supply of 450mm silicon
- Broaden equipment base to generate additional 450mm test wafers
- Factory infrastructure to support increased operational scope

2011: Opportunity to align industry timetable and increase scale

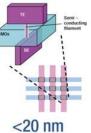

Logic and memory roadmap Focused on materials and nanostructures

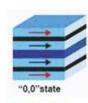


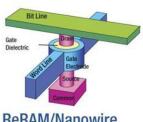
Advanced structures

Beyond CMOS materials/structures

Memory


CT Flash


ReRAM

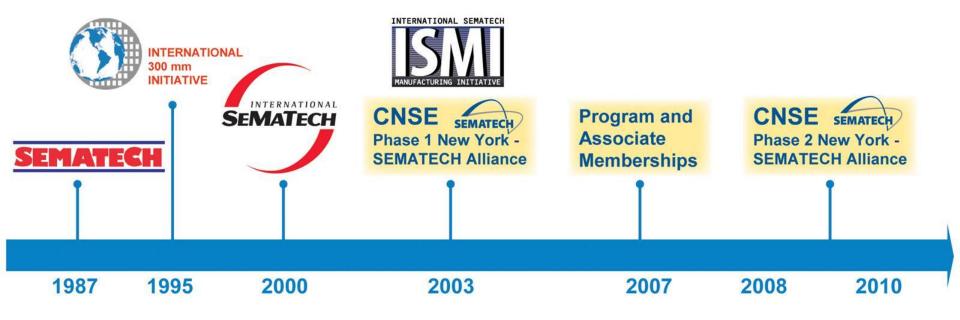

1T DRAM

ReRAM

STTRAM

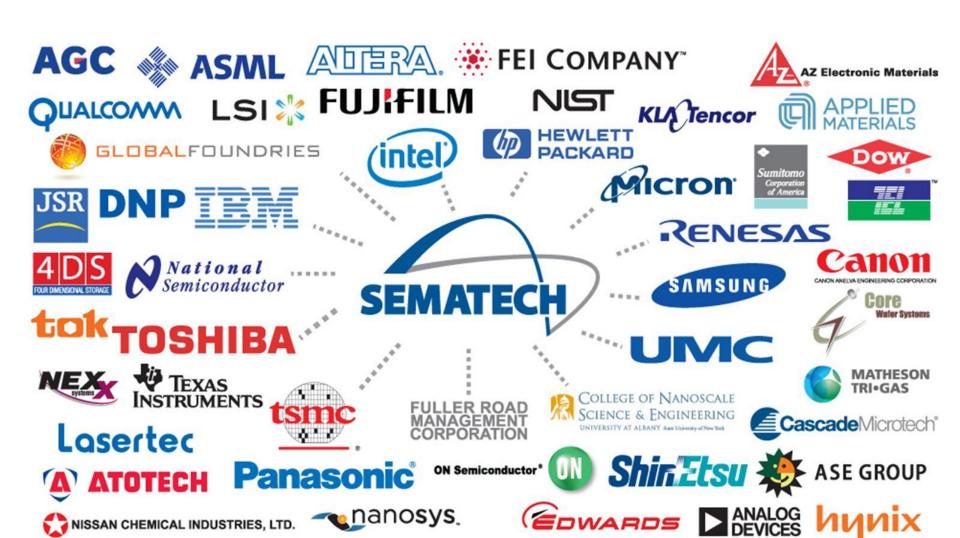
ReRAM/Nanowire 3DArray

About SEMATECH



SEMATECH: a dynamic industry consortium

- Helped recapture US lead in semiconductor manufacturing
- Successfully managed \$870M in federal funding, ramping up membership, transitioning to self-sufficiency
- Led industry-wide initiatives to enable industry transitions (next-generation patterning, next wafer size, novel materials and device structures)


Catalyst for technology commercialization and economic development

1 May 2012

SEMATECH members

NISSAN CHEMICAL INDUSTRIES, LTD.

Program membership growth

TEL – 3D Accretech – 3D

1

Asahi Glass -Litho

2008

Rudolph - Met

4

2009

NEXX - 3D

Atotech - 3D

Rudolph - 3D

TEL - FEP

Metrosol - FEP

Canon Anelva - FEP

TOK - Litho resist

Shin Etsu – Litho resist

FEI - Met

Core Wafer - FEP

SUSS - FEP

13

2010

TEL - Litho

DOW - Litho resist

AMAT - ESH

ASML - Litho

JSR - Litho resist

AZ Elec. – Litho resist

Qualcomm

Edwards - ESH

Lasertec - 3D

DNP - Litho

Panasonic - Mature

Nanosys - FEP

Sumitomo - Litho Resist

Nissan Chemical -Litho Resist 2011 (ytd)

Qualcomm - 3D

Altera - 3D

0n - 3D

LSI - 3D

Hynix - 3D

Fujifilm - Litho Resist

ADI - 3D

ASE - 3D

4DS - FEP

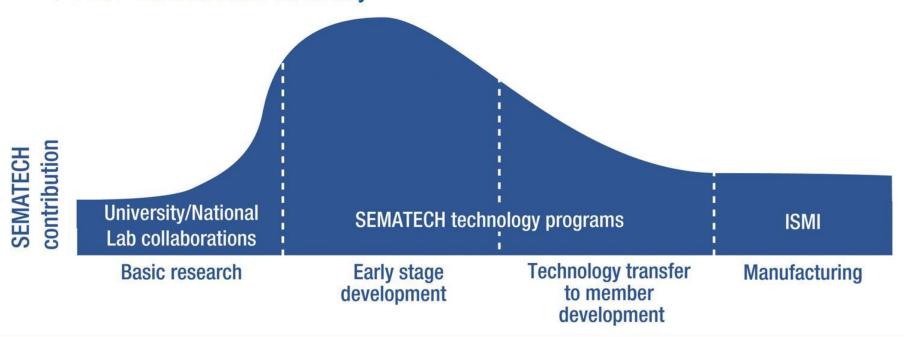
Matheson - ESH

NIST - 3D

KLA-Tencor – Litho

38

35 30 25 25 10 5 07 '08 '09 '10 '11

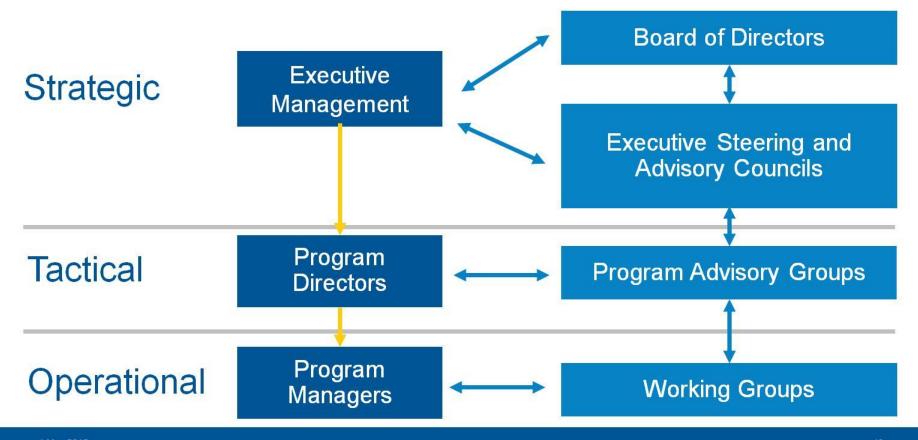

26

1 May 2012

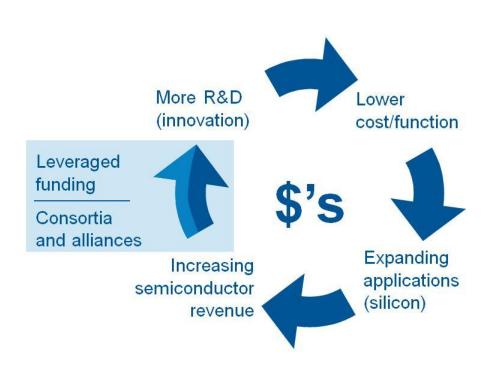
Bridging research, development, and manufacturing

- A membership driven global consortium
- Driving technical consensus for the industry
- Pulling research into the industry mainstream
- Leading major programs to address critical industry transitions
- Focus on manufacturability

Industry/university/government collaboration in Albany



What collaboration is really all about



- Assignees make up ~35% of the technical workforce
- Members are involved at all levels of decision-making

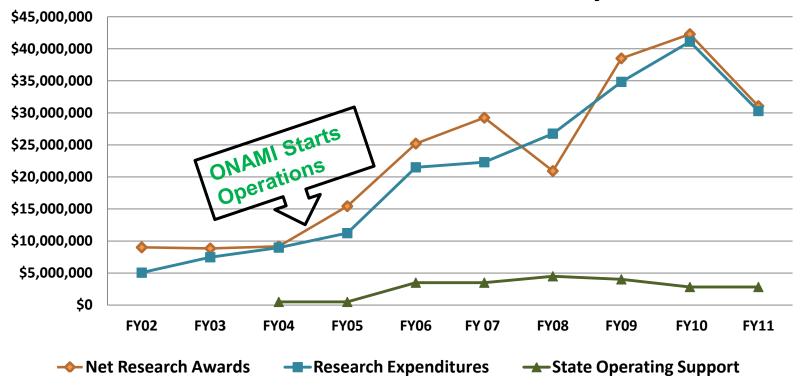
Bringing the industry together

- Economics remain the driving force for change in the semiconductor industry
- We must improve our collaboration to sustain technology momentum
- Consortia will continue to innovate globally and lead major transitions
- New sources of leveraged funding will be needed to successfully introduce new technologies

Accelerating the next technology revolution

Development

Manufacturing

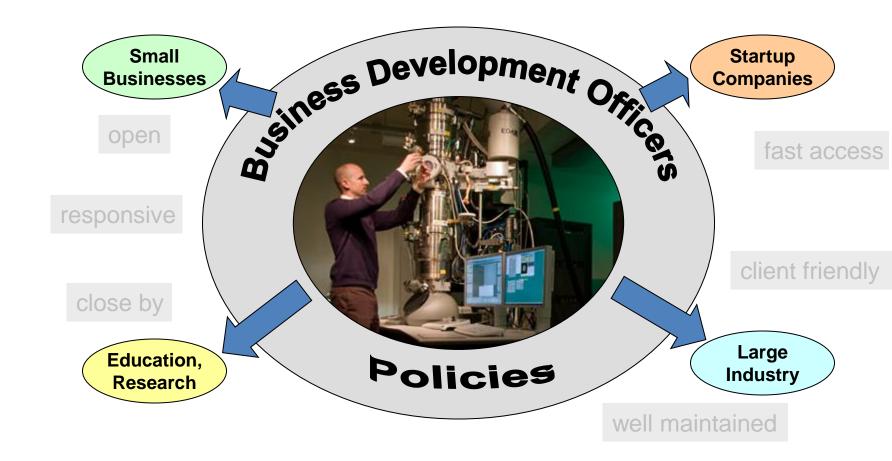

1 May 2012 4:

ONAMI CHALLENGES and SUCCESSES

ONAMI's Mission and Metrics

- @Grow Materials Science and Device R&D (award/contracts \$\$, growth rate)
- Provide High-Tech Facility Access to Business (# clients, \$\$ billed)
- Enable Oregon tech startups to raise capital (\$\$ private capital, \$\$ leveraged grants)

ONAMI Research Award History

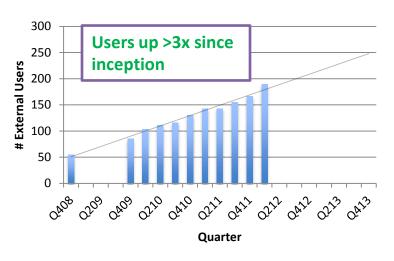

Latest Highlights:

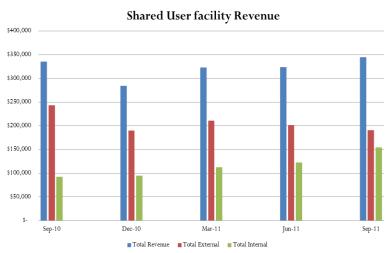
\$21.5M NSF Center for Sustainable Materials Chemistry (Keszler/Johnson)

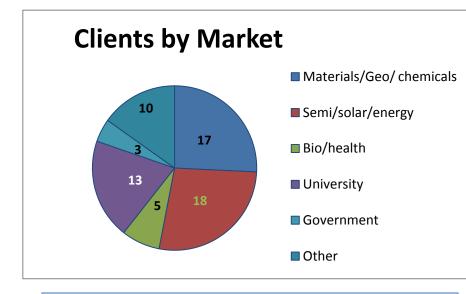
\$2.0M DoE B-N liquid H2 storage material (Liu, UO)

\$1.9M NIH Nanomaterial's biological effects (Harper, OSU)

Research enterprise 3-4X larger than when we started



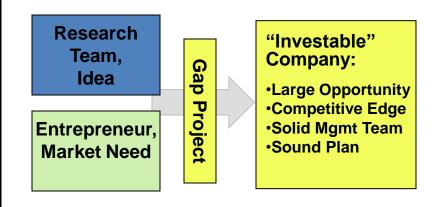

The "High Tech Extension" Concept


Nanoscience facilities and equipment can best benefit technology development when they are conveniently located and easy to use by businesses. Such access is especially important to the small and medium enterprises (SMEs) that are critical for early stage commercialization. State and regional economic development field staff can serve as "high tech extension" agents.

ONAMI High Tech Extension

External Organizations Using SUF (Cumulative)

1Q2012


189 external clients - cumulative 76 external users - 49 Oregon 9 new clients reported

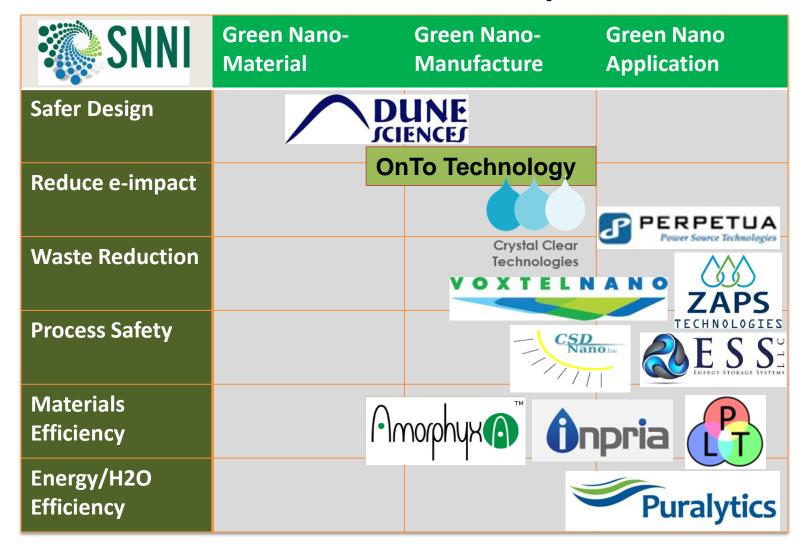
First-time user grants:

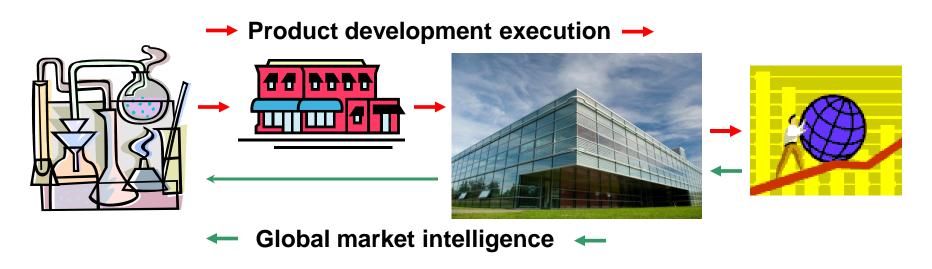
Vitriflex, AISThesis, Oral Biotech, Trimble, Inspired Light, Triquint, Microchip

The ONAMI Commercialization Gap Fund Concept

Technology Stage	Company Stage	Funding Source	
Research Result	(NA)	NNI Grants	
Proven Prototype	Formation	Gap Grants (state + federal)	
Products, Sales	Development	Early Stage Investors	
Product Line Expansion	Growth	Various (private)	

Federal/state partnerships in "gap" (aka "valley of death") funding for new ventures commercializing NNI technology could accelerate commercialization by 2-4 years and also ensure proper focus on economic returns and job creation.


The ONAMI Gap Fund Portfolio, February 2012


http://www.onami.us/Commercialization/currentProjects.php

Thrust Area and Project Host Campus	MECS (microtech- based energy and chemical systems)	Green Nano (materials and processes)	Solid State (batteries, printed electronics, green electronic materials)	Nanoscale Metrology	Nano Bio- Tech
OSU	Home Dialysis Plus ABP Mtek Energy Trillium Fiberfuels Apex Drive Labs NWUAV Mtek desal Applied Exergy	Inpria Nanobits CNXL Voxtel Nano CSD Nano Microflow CVO Amorphyx	Peregrine/Promat OnTo Technology Energy Storage Solutions Inspired Light	ZAPS Technologies	Northwest Medical Isotopes
PSU/OHSU	Energy Storage Systems	Puralytics	Pacific Light Technologies	Flash Sensor	DesignMedix PDX Pharma
UO		Crystal Clear Technologies Dune Sciences	Perpetua Power	NemaMetrics	Floragenex Quintessence Cascade Pro.

\$103M leverage to date, more pending

A Green Nano Startup Portfolio

Organizational roles/needs in technology commercialization:

Research Institutions: scientific discovery, fundamental invention, talent development, shared user facilities. Need: public and philanthropic funding, enabling regulatory/legal environment

Startup companies: pioneering technology and market development of small - but disruptive – first opportunities. **Need:** equity/royalty licenses, large company customers/partners, high-risk (early stage) capital, minimal regulatory/legal burdens

Large companies: Manufacturing scale-up and global business development.

Need: large & profitable "mainstream" markets, low-risk technology options

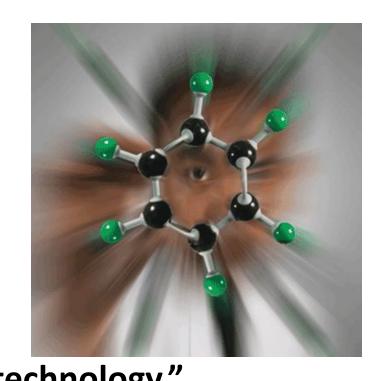
The Oklahoma Nanotechnology Initiative

Jim D. Mason, CCE, CEcD, EDFP Executive Director Oklahoma Nanotechnology Initiative

jmason@oknano.com

405-664-0273

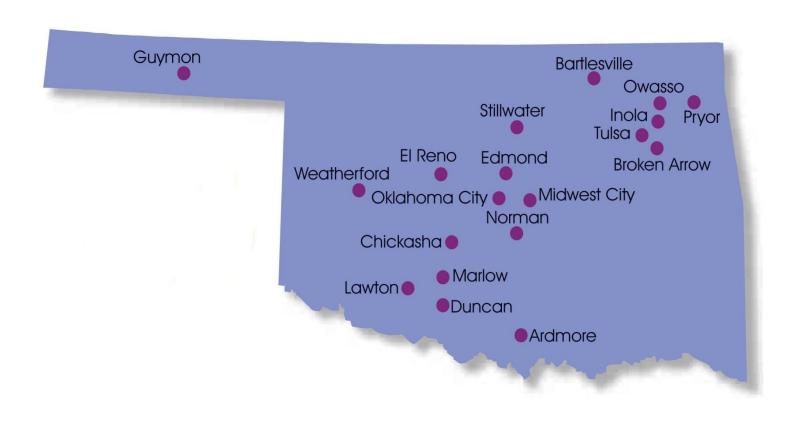
www.oknano.com


Technology Initiatives, LLC

ONI timeline

- 2000-EPSCOR Grant provided nano equipment, researchers, fellowships
- 2003 Oklahoman Nano Initiative created
- 2004- ONI funded by state legislature \$125 k for each of two years
- 2005 Hired Exec. Director
- 2006 Gov. signed Oklahoma Nanotechnology Sharing Incentive Act providing \$2 M per year for ONI & ONAP

ONI VISION


 "Oklahoma companies are world leaders in creating new and improved products through applications of Nanotechnology."

 Since 2006 we have Oklahoma has seen an increase from six companies involved in nanotechnology to 70 Oklahoma companies today!

- In 2010 ONAP-funded projects raised \$10 for every \$1 of state funding.
- In 2011, ONAP-funded projects raised \$18 for every \$1 of state funding.
- More than 250 new jobs have been created by ONAP funded companies.
- Each of our 29 funded ONAP projects has resulted in a new or improved commercial product going to market!

Oklahoma Nano Companies

