

Materials Science & Technology

Use of modeling to predict environmental concentrations of nanomaterials

Bernd Nowack

Environmental Risk Assessment and Management Group Empa - Swiss Federal Laboratories for Materials Science and Technology St. Gallen, Switzerland

Background

- n ENM are used in numerous applications and products
- n ENM release during production, use and disposal is likely
- First results about release of ENM published,
 e.g. from paints and textiles
- n Currently no quantitative trace analytical method available: Therefore no information on environmental exposure available
- n Modeling can provide these data

Material flow to the environment

Product life cycle

Materials Science & Technology

Environmental fate: Multi-compartment modeling

Release of ENM from products

- Some products are used up (e.g. sunscreen): (almost) complete release
- n Most products release only part of the ENM
- n Only few data available on release
 - n Paints
 - n Textiles
 - n Coatings
- n Estimations required

Material-flow model for nano-TiO₂ for the EU (mode values in tons/year)

Gottschalk et al. (2009) Environ. Sci. Technol. 43: 9216-9222.

Materials Science & Technology

Modeled environmental concentrations in waters of the EU (mode and 15 and 85% quantiles in ng/L)

	TiO ₂	Ag	ZnO	CNT	fullerenes
Surface water	15 (12-57)	0.8 (0.6- 2.2)	10 (8-55)	0.004 (0.004- 0.021)	0.02 (0.01-0.12)
Treated wastewater	3'470 (2'500- 10'800)	43 (33-111)	432 (136- 1'420)	15 (11-32)	5 (4-26)

Gottschalk et al. (2009) Environ. Sci. Technol. 43: 9216-9222.

Release of Ag from textiles during washing

Geranio, Heuberger, Nowack, Environ. Sci. Technol. 43: 8113-8118 (2009)

Characterization of released ENM

ZnO from a steel panel (Vorbau, 2009)

TiO₂ from paint (Kaegi 2008)

Ag from paint (Kaegi 2010)

Ag from a medical mask (Benn 2010)

Open issues in current models

- n All modifications of one ENM are lumped together (e.g. coated-uncoated, different mineralogical forms)
- **n** Form of released materials is not considered
 - **n** Free particles?
 - n Matrix-bound?
 - n Nanoparticulate?

In what form are ENM present in the environment? Silver as example

Conclusions

- n All release paths need to be covered to estimate environmental concentrations
- Note: Not
- Note: Not
- Bulk form and dissolved metals need to be considered, too

